Thermodynamic bounds on symmetry breaking in linear and catalytic biochemical systems

S. Liang, P. De Los Rios & D. M. Busiello
Phys. Rev. Lett. 132, 228402 (2024)

$\color{red}\blacksquare$ Network geometry reveals universal thermodynamic bounds in various of biochemical systems, ranging from the error rate of kinetic proofreading to the contrast of reaction-diffusion pattern.

$\color{red}\square$ Poster | Video



A Minimal Model for Carnot Efficiency at Maximum Power

S. Liang, Y.-H. Ma, D. M. Busiello & P. De Los Rios
arXiv 2312.02323 (2023)

$\color{red}\blacksquare$ A minimal model reveal the attainability of Carnot efficiency at maximum power.


Thermodynamic Bounds on Time-Reversal Asymmetry

S. Liang & S. Pigolotti
Phys. Rev. E 108, L062101 (Letter) (2023)

$\color{red}\blacksquare$ Temporal-coarse-grained measures of time-reversal asymmetry can be used to infer non-equilibrium driving forces.



Emergent thermophoretic behavior in chemical reaction systems

S. Liang, D. M. Busiello & P. De Los Rios
New Journal of Physics 24 123006 (2022)

$\color{red}\blacksquare$ Thermophoretic behavior can emerge from reaction-diffusion system.

$\color{red}\square$ Poster | Summary



Equilibrium and non-equilibrium furanose selection in the ribose isomerisation network

A. V. Dass, T. Georgelin, F. Westall, F. Foucher, P. De Los Rios, D. M. Busiello, S. Liang & F. Piazza
Nature Communication, 12, 2749 (2021)

$\color{red}\blacksquare$ Temperature gradient can boost the selection of furanose beyond its equilibrium limit.


Dissipation-Driven Selection under Finite Diffusion: Hints from Equilibrium and Separation of Time Scales

S. Liang, P. De Los Rios & D. M. Busiello
Entropy 23 1068 (2021)

$\color{red}\blacksquare$ Separation of time scales helps us understand dissipation-driven selection.


Dissipation-driven selection of states in non-equilibrium chemical networks

D. M. Busiello, S. Liang, F. Piazza & P. De Los Rios
Communication Chemistry 4 16 (2021)

$\color{red}\blacksquare$ Chemical reaction network with kinetic asymmetry can harvest thermal energy to break symmetry in chemical space.