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1. Introduction 2. How to describe out-of-equilibrium
Living systems are maintained out-of-equilibrium by external driving System: Local Deta i Ied Ba Ia nce

forces. At stationarity, they exhibit emergent selection phenomena that

break equilibrium symmetries and originate from the expansion of the A chemical net < of N . " habiliti
accessible chemical space due to non-equilibrium conditions. chemical network or IN Species whose probabliities
follow a rate equation:
We derive universal thermodynamic bounds on these symmetry- 0 stationar
breaking features in biochemical systems. Our bounds are independent ] — >
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extend our results to master equations in the chemical space. Using our dt )
framework, we recover the thermodynamic constraints in kinetic JA7Y) =0,equilibrium Q .
proofreading. Finally, we show that the contrast of reaction-diffusion The t " tes foll the | | detailed bal A
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Our results provide a general framework for understanding the role of non- refation T
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3. Non-equilibrium condition from paths || 4, Main result: bound on steady
Along each reaction path, an State ratio

equilibrium constant can be defined B A S, The steady-state ratio of two state occupations

: : : Non-equilibrium | . .
according to the local detailed balance K, T — is bounded by the maximum and minimum
equilibrium constants among all possible paths

condition, which represents the 081 |
/ |  between these two states. These two bounds

(). Corresponding equilibrium ratio of the ;
— ¢ BAEG=Fi;) hopulations on two end states in the “or '. i ilibri
pPop ; | determine the nonequilibrium phase space. At
thermodynamic equilibrium, two bounds

_(m) absence of all other paths. g
+ | collapse to a single line.
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D; Path criteria for non-equilibrium: 0.2-/," i
If there exist two paths between the same

start and end states with different '
In a chemical reaction system, equilibrium constants, then the system is
we can identify multiple paths out of equilibrium. This is equivalent to the
between two given states in the cycle-affinity criteria, since combining two

network. paths forms a cycle.

Formal proof: matrix-tree theorem

5. Bound on the contrast of reaction-
] . 6. Bound on error rate
diffusion patterns N e
iving systems encode information in the form of RNA and DNA.

Genome duplication, translation and transcription are processes
that use this information to select the correct substrate with

Mass conservin -
( g) ADP + Pi high fidelity, ensuring the survival of the organism. Since the
accuracy of this selection is severely limited by equilibrium

reaction-diffusion system A +3U
_S constraints, back in 1974 Hopfield proposed the existence of
Ou = D, V?u + f(u,v) © ATP energy-consuming intermediate steps that favor kinetic
+ discrimination.
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The non-equilibrium phase space of mass- L max Non-equilibrium phase space ] and right substrate. the wrong state to the right state.
conserving reaction-diffusion systems constrains 1 5 h i
the phase-space geometry. The bound on the T ;
maximum and minimum concentration in a stationary ; ; —
pattern is determined by the intersections of the flux- V1.0 . \Kmin ) 7 u CO n CI u S I O n
balance subspace and the boundary of non-equilibrium ot e o :
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Pattern visibility is upper bounded by goes to zero. Moreover, we only need to know the thermodynamic bounds on symmetry e .
the non-equilibrium driving force. Two force driving the system out of equilibrium to bound the contrast breaking in biochemical .
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is valid for any mass-conserving RD systems.




