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Abstract

Life is likely to originate from non-equilibrium conditions. In the deep sea hydrothermal vents

of the primitive earth, the presence of a temperature gradient and rich chemical components

provided an ideal condition for the emergence of life. Before the formation of protocells, abi-

otic synthesis must take place and molecules evolve step by step to self-replicating molecules,

a process also know as chemical evolution. This process is not likely to happen under an

equilibrium condition since the chemical evolution is from stable inorganic components to

thermodynamically unstable, complex self-replicating polymers. A temperature gradient can

play the role as a non-equilibrium driven force to brings the prebiotic chemical evolution in

non-equilibrium steady-state(NESS). In this thesis, we present a master equation description

of non-equilibrium chemical reactions with Kramers-like transition rates. We use two sim-

ple reaction models to illustrate how chemical reaction systems utilize the non-isothermal

environment to gain negative entropy and develop into kinetic-stable states. We also show

that a periodic variation of temperature, as a stochastic pump, can drive the same reaction

systems out of equilibrium to mimic the NESS. At last, we proposed a new mechanism of ther-

mophoresis, a temperature gradient-driven inhomogeneous distribution of particles, based

on a multi-state particle model with state-dependent diffusivity.

Key words: non-equilibrium thermodynamics, origin of life, stochastic thermodynamics,

non-isothermal condition, kinetic stabilization, thermophoresis
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1 Introduction

Living systems operate away from thermodynamics equilibrium, continually consuming

energy[1]. Such a process is referred to as "feeds on negative entropy" by Schrödinger in his

landmark book, What is Life? [2]

How can living systems emerge from the inanimate state? As we know, one key feature

of livings systems is that they can replicate themselves using building blocks; for example,

RNA and DNA can use nucleotides to implement template replication. As RNA and DNA

are not thermodynamically stable molecules, the replication must take place under non-

equilibrium conditions. Furthermore, to initiate such a self-replicating process, spontaneous

polymerization from abundant building blocks is required. The abundance of building blocks,

such as nucleotides and amino acids (building blocks of proteins), cannot occur automatically

but requires an externally driving force. It is believed that submarine hydrothermal vents of

primitive earth are likely to be the place where the early life originated[3, 4]. The hot vent

can provide essential chemical components and a temperature gradient as a driving force

on chemical evolution. Thus we need to study the chemical reactions in non-isothermal

conditions to see how prebiotic molecules can utilize the non-isothermal environment to

evolve to higher-energy states for later use of polymerization, and how the non-isothermal

environment leads to the accumulation of particles for more effective abiotic synthesis.

In the book What is Life?, Schrödinger also argues that the living organism avoids decaying

"by eating, drinking, breathing and (in the case of plants) assimilating. The technical term

is metabolism." However, in the very early stage of the origin of life, when neither protocells

nor the metabolic cycles have formed, chemical evolution requires other sources of negative

entropy. Stockar et al.[5] proposed that generating heat is another way to rid internal entropy

production for microbial growth. Indeed, the increasing entropy of the environment due to

heat exchange can also be interpreted as a negative entropy flux to the reaction systems. In the

presence of a temperature gradient, the molecules absorb heat in the high-temperature region

and expel this heat to the low-temperature reservoir, generating a steady negative entropy

flow. The negative entropy flow brings the reaction system into an out-of-equilibrium state

and allows it to explore a larger chemical space.
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Chapter 1 Introduction

Now we need to find a proper theory to describe the chemical reaction in non-isothermal

conditions. Various investigations on stochastic thermodynamics under non-isothermal con-

ditions have been conducted[6–8]. In this manuscript, we follow a self-contained method

to find master equations with transition rates of Kramers form to describe non-isothermal

reactions. As derived step by step in Chapter 2, Kramers transition rates contain kinetic barri-

ers, and as discussed in several studies[9–13], the kinetic features of a system provide another

stabilization mechanism, called kinetic stabilization, which is distinct from the minimization

of free energy of thermodynamic stabilization.

Unlike in the equilibrium case where thermodynamic stabilization results in the system’s

lowest free-energy state, in NESS conditions, a reaction system can be stabilized in states

identified by its kinetic feature. This is in Chapter 3, where we illustrate that a temperature

gradient can make a reaction system stabilize itself in its high-energy state. We also demon-

strated that the higher the kinetic barrier is, the better the stabilization effect. Furthermore, a

three-state reaction system, in which two low-energy states have equal energy but different

kinetic barriers to the high-energy state, exhibits so-called dissipation-driven selection[14].

In both cases, the NESS is maintained by dissipation energy in a temperature gradient. By

calculating the entropy production rates, we show that there are always negative entropy

fluxes from the non-isothermal environment to the reaction system.

A NESS can be mimicked by a time-periodic variation of external driving parameters, namely

a stochastic pump[15]. In Chapter 4, we show that the NESS of a reaction system in a tem-

perature gradient can be mimicked by a periodic variation of temperature, such that the

time-averaged quantities show the same behavior as the NESS quantities of the temperature

gradient scenario.

The effect of temperature-gradient driven accumulation of particles called thermophoresis

is also discussed, which is crucial in the origins of life since it can lead to an increase in the

reactivity of polymerization[16, 17]. In Chapter 5, based on a multi-state particle model with

state-dependent diffusivity, we propose a microscopic mechanism of thermophoresis and give

an expression of the Soret coefficient which characterizes the strength of thermophoresis.
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2 Non-equilibrium systems

In order to understand a chemical reaction system in non-isothermal conditions, we need

first to know how to describe it. Here we start from classical mechanics and by integrating

out all environment parameters to obtain a stochastic mechanics description. Then from the

stochastic mechanics, we draw a probabilistic description, called the Fokker-Planck equation.

Since chemical reactions describe transitions among discrete states and the potential energy

landscape thus have several local minimums. The Fokker-Planck equation in a continuous

chemical space can be further simplified to a discrete state master equation via the separation

of timescale.

The non-isothermal condition will be introduced at the level of a discrete chemical reaction.

The transition rates between states are temperature-dependent, so a non-isothermal condi-

tion, such as a temperature gradient or time-periodic variation of temperature, can maintain

a reaction system out of equilibrium.

2.1 From Newton equation to Langevin equation

The first step is to derive the Langevin equation from a Hamiltonian system. Let us consider

a system of a large molecule and its surrounding solvent molecules. The Hamiltonian of

such a system can be separated into three terms, the large molecular part, the interaction

part, and the environmental (solvent) part. The configuration of the large molecule can be

represented by a set of coordinates of its n components in the position and momentum space,

p = [p1, p2, . . . , pn] and q = [q1, q2, . . . , qn]. For example, a polymer can be represented by the

coordinate and the momentum of the constituting monomers.

H (q,p,qe ,pe ) = H(q,p)+Henv (qe ,pe )+Hi nt (q,qe ). (2.1)

There are several solvable models proposed to derive the Langevin equation of Brownian

particles from a Hamiltonian system[18, 19]. The main approximation is treating the solvent

3



Chapter 2 Non-equilibrium systems

(a) Large molecule and its components (b) Large molecule as a whole

Figure 2.1 – A detailed view and a coarse-grained view of a large molecule in solvent. The
solvent molecules collide with a large molecule to make it as a whole experience Brownian
motion and its components experience constrained Brownian motion.

molecules as harmonic oscillators coupled to the Brownian particle. As the solvent molecules

are much smaller than the Brownian particle, we can integrate out the solvent molecules by

taking them as fast variables.

A component of the large molecule can be regarded as a constrained Brownian particle where

the constrain is its interaction with the rest of the large molecule. Based on this, we can extend

the derivation of Zwanzig[19] and obtain the over-damped Langevin equation of the k-th

component of the large molecule (see detailed derivation in Appendix A.1)

d qk

d t
= − 1

γk
∂qkU (q)+Γk (t ), (2.2)

where U (q) is the potential energy of the large molecule, γk is the friction coefficient of the

k-th component and Γk (t ) is a white noise acting on j-th component of the particle. The noise

and friction coefficient obeys fluctuation-dissipation theorem 〈Γk (t )Γk (t ′)〉 = δ(t − t ′)kB T /γk .

The motion of the large molecule as a whole can be obtained by a direct weighted sum of the

monition of its components where the weights are the sizes of the components, {sk }. Note that

the friction coefficient γk is proportional to the size sk , hence we get

d x

d t
=

1

sk

∑
k

d(sk qk )

d t
=

1∑
k γk

∑
k

d(γk qk )

d t
=

1∑
k γk

∑
k
γkγk (t ) =Γ′(t ). (2.3)

From this, we can define the friction coefficient for the large molecule as γx =
√∑

k γ
2
k (

∑
k γk )2,

and collect the prefactor in the noise as diffusion coefficient Dx = kB T
γx

, we get the Langevin

4



Non-equilibrium systems Chapter 2

equation in positional space as

d x

d t
=

√
2Dxηx (t ). (2.4)

Now we can study the Langevin equation for the chemical space. The chemical space has

many degrees of freedom which are not all of the interests. Therefore we need to integrate

out the unimportant degree of freedom and the remained ones are called the reaction coor-

dinates. Fig.2.2 shows a simple example where the system has two degrees of freedom, but

the transitions between potential wells happen along one direction. Thus, we can project the

potential energy surface to the principle direction of reaction and obtain a one-dimensional

free energy landscape, as shown in Fig. 2.2. Using q to denote the reaction coordinate, the

Langevin equation on the free energy landscape reads

d q

d t
= −1

γ

dU (q)

d q
+

√
2Dqηq (t ). (2.5)

Here we use the potential energy U (q) instead of free energy G(q) is because when the tem-

perature (noise) is much smaller than the energy barrier, the entropic part of the free energy

is negligible so that G ' E , and the energy can be well-approximated by the potential energy

U (q) in the over-damped limit. Now the system is described by two Langevin equation: Eq. 2.4

describes the diffusion in positional space, and Eq. 2.5 describe the diffusion on the reduced

chemical space - the reaction coordinate. These two Langevin equations generate stochastic

trajectories in the position-chemical space.

(a) Energy landscape (b) Free energy landscape

Figure 2.2 – Dimension reduction of the chemical space. The free energy landscape is obtained
by projecting the energy landscape to the reaction coordinate.

2.2 From Langevin equation to Fokker-Planck equation

In the last section, we obtained an overdamped Langevin equation in the position-chemical

space. These two equations generate stochastic trajectories of a particle in position-chemical

5



Chapter 2 Non-equilibrium systems

space. For many particles in a solvent system, what we observe is not an individual trajectory,

instead, it is the statistical quantities such as concentration, or probability distribution. There-

fore, if we can know the probabilities evolution governed by the Langevin equation, we can

understand the behavior of the system.

To do so, we need to translate the trajectory description to the probabilistic description, namely

the Fokker-Planck equation, which predicts the time-evolution of the probability distribution

of a stochastic process. The derivation can be found in almost all standard textbooks of

stochastic process[20–22]. Here we provide a short version to capture the main steps of the

derivation.

For a stochastic process described by Langevin equation

ẋ = A(x)+B(x)η(t ), (2.6)

the mean and average of the increment of the stochastic variable in a short time interval∆t

can be calculated using Ito calculus as

〈∆x〉∆t = A(x)∆t

〈∆x2〉∆t = B 2(x)∆t .
(2.7)

Then we are interested in the evolution equation of probability P (x, t ). It can be expressed by

the Chapman-Kolmogorov equation as

P (x, t +∆t ) =
∫

x0

d x0P (x, t +∆t |x0, t )P (x0, t ). (2.8)

We can expand the conditional probability to the second order of∆t

P (x, t |x0, t −∆t ) = δ(x −x0)+〈∆x〉∆t∂xδ(x −x0)+ 1

2
〈∆x2〉∆t∂

2
xδ(x −x0). (2.9)

Substituting it back to Eq. 2.8 gives

P (x, t +∆t ) = P (x, t )+∂x (〈∆x〉P (x, t ))+ 1

2
∂2

x

(〈∆x2〉P (x, t )
)

. (2.10)

The mean and average are related to the drift, and noise terms are given in Eq. 2.7. Therefore

we obtain the time evolution equation of the probability distribution of the stochastic variable

x

∂t P (x, t ) = ∂x (A(x)P (x, t ))+ 1

2
∂2

x (B(x)2P (x, t )). (2.11)

6



Non-equilibrium systems Chapter 2

For the chemical reaction system of interest, we have two Langevin equations. The corre-

sponding Fokker-Planck equation in the position-chemical space is

∂t P (x, q, t ) = ∂2
x (Dx P (x, q, t ))−∂q

(
− 1

γq
P (x, q, t )∂qU (q)

)
+∂2

x (Dq P (x, q, t )). (2.12)

2.3 From Fokker-Planck equation to Master equation

Chemical reactions are defined on a set of discrete states, describing transition among some

chemical species. That means we need to do one more step to find well-defined states

from a continuous energy landscape in chemical space. In thermodynamic equilibrium,

a system described by the Fokker-Planck equation relaxes to Boltzmann distribution. The

exponential nature of Boltzmann distribution guarantees that the system mainly stays in

the local minimums of the energy landscape. That means the chemical space can be well-

discretized by regarding the local minimums of potential as discrete chemical states. Therefore,

we can construct a master equation to describe the transitions among the potential wells

based on the Fokker-Planck equation.

Let us consider a bistable system as an example. As shown in Fig. 2.3, the chemical space is

one-dimensional, and the energy landscape has two local minimums. When the temperature

is low enough, the particles mainly stay in two potential wells. Labeling the two wells as state

A and B . A particle in either state can gain thermal energy from the environment and jump

across the barrier to reach the other state, so we have a two-state chemical reaction A � B

and the time-evolution of the probability distribution is described by a master equation:

∂t p A = −kB A p A +kAB pB

∂t pB = −kAB pB +kB A p A ,
(2.13)

The two transition rates kB A and kAB need to be derived from the Fokker-Planck equation.

The first step is to rewrite Eq. 2.12 in form of fluxes in the position-chemical space:

∂t P +∂x Jx +∂q Jq = 0 where

Jx = −∂x (Dx P )

Jq = −P 1
γ∂q H −∂q (Dq P ).

(2.14)

The flux in the q direction can be written in a compact form:

Jq = −Dq e
− H

kB T ∂q

(
e

H
kB T P

)
, (2.15)

where we used the Stokes-Einstein relation Dq = kB T /γq . The escape rate was first derived by

Kramers, hence it is called Kramers escape rate, which is defined by the ratio of the escape flux

7



Chapter 2 Non-equilibrium systems

Figure 2.3 – Energy landscape of a bistable reaction. The two local minimums can be regarded
as discrete states. Then the transition rates between these two states can be calculated and
referred as Kramers rate.

from one state and the probability in that state:

kB A ≡ Jba

p A
(2.16)

So to find the Kramers rate from state A to B , we need to calculate both the probability in state

A and the flux. To find the flux Jba , let us rewrite the Eq. 2.15 as

Jq

Dq e
− U

kB T

= −∂q

(
e

U
kB T P

)
. (2.17)

Suppose the system relaxes to near-equilibrium in state A and is empty in state B , the flux

is purely from the potential well A so that Jq = Jba . The near-equilibrium ensures that Jq is

independent of q , which allows us to integrate both sides of the above equations from a to b:

Jab =
−Dq e

U
kB T P |ba∫ b

a e
U

kB T d q
=

Dq e
U (a)
kB T P (a)∫ b

a e
U

kB T d q
←-P (b)=0

' Dq e
U (a)
kB T P (a)∫ b

a exp
[

1
kB T (U (c)+ 1

2U ′′(c)(q − c)2)
]

d q
←-saddle point approximation around c

' Dq

√
|U ′′(c)|
2πkB T

e
−U (c)−U (a)

kB T P (a).

(2.18)

8



Non-equilibrium systems Chapter 2

The flux is obtained, then we need to calculate the probability in state A, i.e. the probability of

the particle’s state in the region [a−, a+]. The local-equilibrium condition in potential well A

gives the relation P (q)/P (A) = exp
(−(U (q)−U (A))/kB T

)
. Plugging it into the integral gives

p A =
∫ a+

a−
P (q)d q =

∫ a+

a−
P (a)e

−U (q)−U (a)
kB T d q ←-Local-Boltzmann

'
∫ ∞

−∞
P (a)e

−U ′′(a)(q−a)2

2kB T d q ←-saddle-point approximation around a

= P (a)

√
2πkB T

|U ′′(a)| .

(2.19)

Using the definition of the Kramers escape rate, we finally obtain the transition rate from state

A to state B :

kB A ≡ Jba

p A
= Dq

1

2πkB T

√
|U ′′(a)U ′′(c)|exp

[
−U (c)−U (a)

kB T

]
=

1

2πγq

√
|U ′′(a)U ′′(c)|exp[−U (c)−U (a)kB T ]

. (2.20)

The escape rate in the opposite direction can be derived in the same fashion and is

kAB =
1

2πγq

√
|U ′′(b)U ′′(c)|exp

[
−U (c)−U (b)

kB T

]
. (2.21)

These two rates characterize the reaction dynamics between these two states. The transition

rates in Kramers form contain two parts. One is a reaction constant k0 = 1
2πγq

√
|U ′′(a)U ′′(c)|

only depends on the shape of the curvature of the potential at the point a and c . The other part,

exp[−(U (c)−U (a))/kB T ] falls exponentially with the activation energy to cross the barrier.

The prefactors of the transition rate, f (a) =
√

|U ′′(a)U ′′(c)| and f (b) =
√

|U ′′(b)U ′′(c)| are not

the same and will lead to the non-Boltzmann ratio between the two chemical states

pa

pb
=

kAB

kB A
=

√
U ′′(b)

U ′′(a)
e
−Ua−Ub

kB T . (2.22)

This non-Boltzmann contribution comes from the unfair definition of two discrete states

around the local minimums. The two potential wells have different characteristic widths,

which are proportional to
p

1/U ′′(a) and
p

1/U ′′(b), respectively. Therefore, in order to make

a fair definition of ’state’, we should seek for states in different regions of the same width. Thus,

9
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the probabilities on each state should be corrected as

p A →W
√

U (a)′′p A , pB →W
√

U (b)′′pB . (2.23)

where W is a constant which characterizes the width of each state. Using EB A to denote the

activation energies of transitions, the reaction rates can be written as

kAB = k0 exp

(
− EAB

kB T

)
kB A = k0 exp

(
− EB A

kB T

)
. (2.24)

Now the ratio between the two reaction rates only depends on the energy difference. We can

further extend the two-state system to a complex reaction network, containing a set of states

{Ci }. The transition rate from state Ci to C j is kC j Ci = k0 exp(−EC j Ci /kB T ). Under this scheme,

the time-evolution equation of the chemical reaction network is a master equation

∂t pci =
∑
j 6=i

(kCi C j (T )pC j −kC j Ci (T )pCi ). (2.25)

In the equilibrium case, a reaction system is coupled to a single thermal reservoir and the

corresponding stationary state is the thermodynamic equilibrium state, whose probability

distribution is given by Boltzmann distribution. And any quantity of interest can be calculated

using the standard method of classical thermodynamics. Now if we put the system in an

inhomogeneous environment, such as a temperature gradient, the system is then brought

out of equilibrium. There does not exist a standard method to solve such a non-equilibrium

system, and studying such a non-equilibrium chemical reaction system is the main theme of

this thesis.

2.4 Non-isothermal condition

After preparing mathematical tools to describe chemical reaction systems, we can now intro-

duce the non-isothermal condition to bring this system out of equilibrium. There are two

ways to implement a non-isothermal condition, one is a temperature gradient, and the other

is a time-dependent temperature.

2.4.1 Temperature gradient

For the spatial non-equilibrium, the particles can diffuse in positional space which is coupled

to a temperature gradient. The consequence evolution equation is thus a reaction-diffusion

equation. Supposing the particle has a set of state {Ci } and the reaction in the chemical space

10
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is described by a master equation, then the evolution equation is given by

∂t pCi (x, t ) =
∑
j 6=i

(
kCi C j (x)pC j (x, t )−kC j Ci (x)pCi (x, t )

)+DCi ∇2pCi (x, t ). (2.26)

The transition rates kCi C j (x) = k0 exp(−ECi C j /T (x)) is a function of position comes from the

fact that it is temperature dependent and there is a temperature gradient along x. In a non-

equilibrium steady state (NESS), the system relaxed to a unique time-independent state, we

can find some interesting features due to its non-equilibrium nature. Two quantities need to

be calculated, the first one is the total probability in state Ci , defined as

P (Ci ) =
∫ L

0
pCi (x)d x, (2.27)

where the integral runs over the whole position space and gives us the total probability of the

state Ci . Unlike in thermodynamic equilibrium, where this probability is solely determined by

the state variable - the energies of the state, where we need to also include the kinetic character

of the system. In the next chapter, we will have a detailed discussion on the properties of a

NESS and how it compares to the thermodynamic equilibrium state.

The second quantity of interest is the non-uniform distribution of all particles, characterized

by boundary

ptot (x) =
∑

i
pCi (x). (2.28)

This non-uniform distribution is namely the thermophoresis effect that a temperature gradient

induces a concentration gradient in a diffusion system. We will show how this effect emerges

from a multi-state particle model when different states have different diffusion coefficients in

Chapter 5.

2.4.2 Time-periodic temperature

The second type of non-isothermal condition is a time-dependent temperature coupled to

reaction systems. The master equation for this case reads

∂t pCi (t ) =
∑
j 6=i

(
kCi C j (t )pC j (t )−kC j Ci (t )pCi (t )

)
. (2.29)

As the temperature is time-dependent, the transition rate kCi C j = exp(−ECi C j /T (t )) also varies

in time. Supposing a periodic variation of temperature with period τ, then we can define a

11



Chapter 2 Non-equilibrium systems

time-average probability in state Ci as

P (Ci ) = PCi =
1

τ

∫ t0+τ

t0

pCi (t )d t . (2.30)

In Chapter 4, we will show these time-averaged quantities are analogies to the space-average

defined by Eq. 2.27.

2.5 Entropy production

A key feature of a non-equilibrium system is that the entropy production is non-zero. For a

master equation, Schnakenberg’s entropy production rate reads

Ṡ =
1

2

∑
j 6=i

(JCi C j − JC j Ci ) ln

[
JCi C j

JC j Ci

]
, (2.31)

where JCi Ci = kCi C j pCi is the flux from state C j to Ci . The entropy production rate can be

separated into to terms. One is the entropy production inside the system, the other one is

the entropy production rate in the environment due to the coupling of the system to thermal

reservoir(s):

Ṡenv =
1

2

∑
j 6=i

(kCi C j pC j −kC j Ci pCi ) ln

[
kCi C j

kC j Ci

]

Ṡs y s =
1

2

∑
j 6=i

(kCi C j pC j −kC j Ci pCi ) ln

[ pC j

pCi

]
.

(2.32)

One can easily verify the following relation:

Ṡs y s =
d

d t

(
−∑

i
pCi ln pCi

)
, Ṡenv =

1

2

∑
j 6=i

JC j→Ci

E j −Ei

T
=

Q̇

T
. (2.33)

where JC j→Ci = JCi C j − JC j Ci is the net flux from state C j to Ci .The heat flow directed from the

system to the environment is defined as positive. From the above equations, we can see that

the internal entropy production rate is the time derivative of Gibbs entropy (kB = 1) of the

system, and the entropy production of the environment is related to the heat exchange so we

can interpretative it as thermodynamic entropy production.

Now we have the entropy production rate as the master equation in an arbitrary state. If the

chemical reaction system is coupled to a single constant temperature reservoir, both Ṡs y s and

Ṡenv will relax to zero when the system is in an equilibrium state. While we are interested in

the NESS driven by temperature gradient or time-periodic temperature, in both cases we can

12
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define the total entropy production rate, either over the whole gradient or averaged over one

period of the time-dependent temperature.

For the temperature gradient case, the chemical reaction system reaches a NESS, so Ṡs y s = 0,

and the entropy production only comes from the heat exchange between the system and the

reservoirs, which gives the average as

Ṡss =
∫

x
d x Ṡenv (x) =

∫
x

d x
Q̇(x)

T (x)
> 0. (2.34)

As for the time-periodic temperature cease, the internal entropy production over one period is

zero,
∫ t+τ

t d t Ṡs y s = Ss y s(t +τ)−Ss y s(t) = 0. So the net entropy production is also solely from

the coupling of the system and the thermal reservoir. We can use the mean entropy production

rate to characterize the dissipation of a time-periodic-driven system:

Ṡ =
1

τ

∫ t+τ

t
d t Ṡenv (t ) =

1

τ

∫
t

d t
Q̇(t )

T (t )
> 0. (2.35)

In both cases, the entropy production of the environment is positive, which means a NESS

is maintained by increasing the environmental entropy. Alternatively, we can use entropy

flux to understand this process. The positive entropy production rate in the environment is

associated with a positive entropy flux from the system to the environment, or equivalently a

negative entropy flux from the environment to the system:

J i n
S = −Ṡenv < 0 (2.36)

This interpretation matches Schrodinger’s statement, "life feeds on negative entropy"[2]. In

Chapter 3 we will study two chemical reaction systems that are maintained in a NESS by

feeding it with negative entropy.
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3 Temperature gradient driving non-
equilibrium chemical reaction

In this chapter, we study chemical reactions in temperature gradient and show how reac-

tion systems maintain themselves in more organized states than equilibrium Boltzmann

distribution via dissipating of energy.

We first adopt the large diffusion approximation to allow us to find the analytic solutions of

non-equilibrium steady state (NESS) for two types of reaction networks. This approximation

can also significantly simplify the perturbative solution. Then, two simple reaction systems are

proposed for illustration of the effects of dissipating energy in a temperature gradient. The first

is a two-state reaction system coupled to two thermal reservoirs with different temperatures.

As reaction system can stabilize itself in the high energy state by increasing the entropy of

the environment. Then we study a three-state system with kinetic asymmetry, which is also

coupled to two thermal reservoirs, and shows that it can distinguish this kinetic asymmetry

and show bias to two states with the same energy but involved in reactions with different

dissipating rates. At last, we numerically explores the effect of autocatalytic reaction for the

three-state dissipation-driven selection system.

3.1 Large diffusion approximation

For the non-isothermal reaction-diffusion equation proposed in chapter 2, diffusion and

reaction compete with each other. If the diffusion coefficient is small enough, the steady-state

of the system will reach a local-equilibrium state, and that local-Boltzmann distribution is

obeyed. In the local equilibrium regime, the probability distribution among the states is

trivially determined by the energies of states and the local temperature. In the opposite limit,

that the diffusion is much faster than chemical reactions, the reaction system is effectively

coupled to multiple thermal reservoirs simultaneously, and the transition rates are the direct

average of the transition rates to each thermal reservoir.

Taking the limit DCi →∞, then the probability of staying in a specific state is constant along

the temperature gradient, then we can integrate the equation over the whole position space to
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find the evolution equation of the marginal distribution in the chemical space:

∂t P (Ci ) =
∑

j
kCi C j P (C j ). (3.1)

The diffusion term vanished due to the no-flux boundary condition, and the transition rates

here are the spatial average, namely kCi C j = 1
L

∫ L
0 kCi C j (T (x))d x. Unlike the constant tem-

perature case, under which the ratio of probabilities of two states is determined by energy

difference, P eq (Ci )/P eq (C j ) = exp(−(Ei −E j )/T ), the topologies and the kinetics of the reaction

network must be taken into account in the non-isothermal scenario. In the large-diffusion

limit, the ratio between a pair of transition rates in opposite directions is

kCi C j

kC j Ci

=

∫ L
0 exp(−ECi C j /T (x))d x∫ L
0 exp(−EC j Ci /T (x))d x

, (3.2)

where the activation barrier can not be eliminated, so in the non-equilibrium condition,

the full kinetic features of the network are reflected in the NESS. Analytic solution of such a

system can be obtained either by standard linear algebra method (Cramer’s rule) or spanning-

tree method[23, 24]. The solution obtained by Cramer’s rule is not easy to find physical

interpretations, while the spanning tree method needs to be calculated case by case for

specific networks. Therefore we aim to find general analytical solutions for specific types of

reaction networks and also a general approximation method for any network.

3.2 General analytic solution for two simple chemical reaction net-

works

Here we present types of chemical reaction networks for which general solutions are able to

obtain. The first one is stated on a single chain, such that there is no loop in the large-diffusion

coarse-grained level. The second type is the simplest loop case that all chemical states are on a

cycle. Then in the rest of the paper, we can directly use the solutions obtained in this chapter.

3.2.1 States on a chain

Suppose we have n chemical states along a chain and the reaction can only take place between

adjacent states, the evolution equation of such as system reads

∂t P (Ci ) =


kCi Ci+1 P (Ci+1)+kCi Ci−1 P (Ci−1)− (kCi+1Ci +kCi−1Ci )P (Ci ) i 6= 0,n

kC0C1 P (C1)−kC1C0 P (C0) i = 0

kCnCn−1 P (Cn−1)−kCn−1Cn P (Cn) i = n

(3.3)
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Since there is no loop, the system always satisfies detailed balance conditions. Therefore, the

probability in the state Ck can be calculated recursively from the probability in state C0 as

P (Ck ) =

∏k
i =1 kCi Ci−1∏k
i =1 kCi−1Ci

P (C0). (3.4)

With the normalization condition, we obtain the probability in the state Ck as

P (Ck ) =

∏k
i =1 kCi Ci−1∏k
i =1 kCi−1Ci

1+∑n
k=1

∏k
i =1 kCi Ci−1∏k
i =1 kCi−1Ci

. (3.5)

It is worth noting that the system obeys detailed balance in the level of large-diffusion coarse-

graining. If we take into account the diffusive flux along position space, the system still has

loops. When we want to calculate other physical quantities such as entropy production rate,

we need to go back to the reaction-diffusion picture and use Eq. 2.34.

3.2.2 Chemical states on a circle

The simplest reaction network with loops is a circle with states on it. Still supposing all chemi-

cal transitions can only happen between adjacent states, we have the evolution equation:

∂t PCi =
∑

k=Ci−1Ci+1

(kCi Ck PCk −kCkCi PCi ). (3.6)

All states are on a circle, so the periodic boundary condition applies, i +n ≡ i . Since there is

only one single loop, only a constant flux exists along the cycle. Denoting the flux by J and

setting the clockwise direction as positive, we then obtain the steady-state balance between

two adjacent states:

J = −kCi Ci+1 PCi+1 +kCi+1Ci PCi . (3.7)

With the above equation, one can get the ratio of PCk to PCl recursively:

PCk = PCl

k∏
i =l+1

kCi Ci−1

kCi−1Ci

− J
k∑

m=l+1

[
1

kCm−1,Cm

k∏
i =m

kCi Ci−1

kCi−1Ci

]
. (3.8)

Taking this calculation along a full cycle, thanks to the periodic boundary condition, we obtain
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the relation between J and probability on state k as

J =

(∏k
i =k−n+1

kCi Ci−1

kCi−1Ci

−1

)
PCk∑k

m=k−n+1

[
1

kCm−1Cm

∏k
i =m

kCi Ci−1

kCi−1Ci

] . (3.9)

The one-cycle product
∏k

i =k−n+1 is independent of the starting point. For a system obeys

detailed balance,
∏k

i =k−n+1
kCi Ci−1

kCi−1Ci

= 1, hence the net flux J is zero. Substituting Eq. 3.9 to Eq. 3.8

gives the ratio of PCk to PCl

PCk

PCl

=

∑k
m=k−n+1

[
1

kCm−1Cm

∏k
i =m

kCi Ci−1

kCi−1Ci

]
∑l

m=l−n+1

[
1

kCm−1Cm

∏l
i =m

kCi Ci−1

kCi−1Ci

] . (3.10)

3.3 Approximation methods

3.3.1 Perturbation theory

The perturbation theory is always a useful tool to get a good understanding of how is a system

driven out from a solved model by external perturbation. Here the solved model is the equilib-

rium thermodynamic distribution of a reaction network coupled to a constant temperature

thermal reservoir. The perturbation here is thus the coupled temperature gradient. Firstly,

we need to define the equilibrium states of the system. As equilibrium thermodynamics is

defined by a constant temperature and a set of energies, here the energies of states are fixed,

what needs to find is the temperature. An intuitive choose is using the average temperature,

T = 1
L

∫
L T (x)d x, to find the thermodynamic equilibrium state. Therefore the perturbation

to the temperature at position x is ∆T (x) = T (x)−T . Under the large diffusion limit, the

time-scale in the x-direction can be eliminated as mentioned above, hence the perturbation

needs to be integrated out along the position space. Then, we can expand the transition rate

from the equilibrium rate of average temperature T :

kCi C j =
1

L

∫
L

k0 exp

[
−

ECi C j

T (x)

]
d x

=
k0

L

∫
L

exp

[
−

ECi C j

T + (T (x)−T )

]
=

k0

L

∫
L

exp

[
−

ECi C j

T
+

ECi C j

T
2 ∆T (x)+O ((∆T (x)/T )2)

]

= kCi C j (T )(1+ δ2

2

E 2
Ci C j

T
2 ).

(3.11)
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where δ =
p

Var(T )
T

. Then we expand steady-state distribution in powers of δ:

P ss(Ci ) = P eq (Ci )+δ2P2(Ci ). (3.12)

The zeroth order term is the equilibrium distribution corresponding to the average temper-

ature. The first-order term vanished since there is no first-order term in the expansion of

transition rates, or physically we can say that a particle should not directly feel the direction of

the temperature gradient. Therefore the perturbation on probabilities starts from the second

order, i.e. the variance of the temperature.

The validity of perturbation theory A condition must be satisfied to do the expansion of

the last line of Eq 3.11, that is |∆T (x)ECi C j /T
2|¿ 1 for any x. So both the lowest and highest

temperatures should satisfy this condition. Jointing these two requirements give

(Tmax −Tmi n)ECi C j

2T
2 ¿ 1. (3.13)

3.3.2 Two thermal reservoirs approximation

Without loss of generality but with great simplicity, we study chemical reactions operating

in two boxes coupled to two thermal reservoirs, one of temperature T1 = T −∆T and the

other of temperature T2 = T +∆T . The transport of a species between two boxes is diffusion-

like, denoting by dCi for species Ci . The large diffusion coefficient here is dCi →∞, and the

averaged transition rate is thus

kCi C j =
1

2

(
k0e−ECi C j /(T−∆T ) +k0e−ECi C j /(T+∆T )

)
. (3.14)

Under this scheme, the integration along a temperature gradient is replaced by summation.

And the main features of the system, the non-isothermal condition, still remain. In the

following sections, we will restrict ourselves to this two-box model and have a more transparent

look at how a chemical resection system responds to non-isothermal conditions.

3.4 Two-state system: stabilization of high energy state

3.4.1 Stabilizing in large diffusion limit

To understand how non-isothermal conditions change the probability distribution of a chemi-

cal reaction system, let us consider the simplest case, a two-state particle with a high energy

state A and a low energy state B . The system can be brought out of equilibrium by coupling to

multiple thermal reservoirs with different temperatures. Without loss of generality, we con-
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sider the simplest setup that there are only two thermal reservoirs of temperature T1 = T −∆T

and T2 = T +∆T . consequently, the evolution equations for the two-box reaction system is

∂t P (Ai ) = −kBi Ai P (Ai )+kAi Bi P (Bi )+dA(P (A j )−P (Ai ))

∂t P (Bi ) = −kA1Bi P (Bi )+kBi Ai P (Ai )+dB (P (B j )−P (Bi )),
(3.15)

where Xi denotes species X in box i , {i , j } = {1,2}or{2,1}, the transition rates are of Kramers-

form and dX is the diffusion-like transport coefficient between two boxes for species X . The

energy difference between two states is ∆E , the energy barrier from state A to B is EB A = ε

and consequently, the activation of the opposite direction is EAB =∆E +ε. In equilibrium

condition of constant temperature T , the probability on the high energy state A is P eq (A) =

1/(1+e−∆E/T ), which contains no information about the kinetic barrier ε.

Figure 3.1 – A two-state chemical reaction system in two boxes with different temperatures.

While, in the large diffusion limit, dx →∞, this master equation is reduced to Eq. 3.1. The

non-equilibrium transition rates between these two states are the average of the rates in the

two reservoirs:

k AB =
1

2
(e−(∆E+ε)/T1 +e−(∆E+ε)/T2 ), kB A =

1

2
(e−ε/T1 +e−ε/T2 ). (3.16)

Such a two-state chemical reaction network is the shortest chain model, so the solution is

given by the general solution in Sec. 3.2.1. The steady-state probability on the high energy

state A is given by

P ss(A) =
kB A

kB A +k AB

=
e−ε/T1 +e−ε/T2

e−ε/T1 +e−ε/T2 +e−(∆E+ε)/T1 +e−(∆E+ε)/T2

> P eq (A;T ). (3.17)
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The NESS probability of a high energy state is always larger than that of the equilibrium

distribution of average temperature T . So we can say that a temperature gradient can stabilize

the reaction system in the high energy state. Based on the dynamics of the system, we can

understand this stabilization effect as the high-temperature reservoir pumps the system to

the high-energy state, which is much faster than the transition to the low energy state in the

low-temperature reservoir. And due to the large diffusion coefficient, a particle stays in each

box for the same amount of time, so the reaction in the fast-reaction box contributes more to

the overall distribution and makes the high energy state more populated than the equilibrium

state of average temperature.

(a) (b)

Figure 3.2 – a. The NESS-triggered kinetic stabilizing effect for varying energy barriers varies
with the energy barrier. b. The NESS stabilizing varies with temperature difference. .

Now let us go to a more quantitative description of the stabilization effect. From Fig 3.2,

the NESS solution shows two regimes. Indeed, these two regimes are predicted by Eq 3.13,

i.e. the validity of perturbation theory. For a small temperature difference, the perturbation

method is valid, and we can find a perturbation solution. In the large diffusion limit, we

need to understand what exactly makes the system non-perturbative. Writing down the non-

equilibrium transition rate from the high energy state to the low energy state, we see it can be

approximated by two expressions for different cases:

kB A =
1

2

(
e−ε/(T−∆T ) +e−ε/(T+∆T )

)
' 1

2
e−ε/T

(
eε∆T /T 2 +e−ε∆T /T 2

)
'

1
2 e−ε/(T+∆T ) ε∆T /T 2 À 1

e−ε/T (1+ ε2∆T 2

2T 4 ) ε∆T /T 2 ¿ 1.

(3.18)

The two regimes are determined by comparing the exponent ε∆T /T 2 with 1. Using this crite-

rion, we can separate the parameters space into a perturbative regime and a large-deviation

regime and find the corresponding result, respectively.
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Perturbative regime (ε∆T /T 2 ¿ 1): When the exponent ε∆/T 2 is much smaller than one,

we can do Taylor expansion and find a non-equilibrium transition rate as the equilibrium tran-

sition rate of T plus a second-order perturbative term. This is the so-called near-equilibrium

condition, where the perturbation theory is valid and gives

P ss(A)

P eq (A;T )
= 1+P eq (B ;T )

∆E(∆E −2ε)

2T 4 ∆T 2 +O
(
∆T 3) . (3.19)

Large-deviation regime (ε∆T /T 2 À 1): When the exponent ε∆/T 2 is much greater than

one, the transition rates in the high-temperature box are much faster than the rates in the

low-temperature box, so the particles in the hot box reach an equilibrium distribution and

then mediate by the fast diffusivity to maintain the particles in the cold box in the same

distribution. Eventually, the steady-state probability distribution is equal to the equilibrium

distribution of T = T +∆T , such that P ss(A) = P eq (A;T +∆T ). We can also name this regime

the high-temperature regime since the probability distribution is fully dominated by the

reactions under high temperatures.

3.4.2 Entropy production rate

We can further discuss how to understand this stabilization effect in terms of entropy pro-

duction. In such a two-box system under NESS, the entropy production comes from the heat

exchange with the two reservoirs:

Ṡ =
∑

i =1,2

(
kBi Ai P ss(Ai )−kAi Bi P ss(Bi )

)
ln

[
kBi Ai P ss(Ai )

kAi Bi P ss(Bi )

]
+ ∑

X =A,B

(
dX P SS(Xi )−dX P ss(X2)

)
ln

[
dX P ss(X1)

dX P ss(X2)

]
=

∑
i =1,2

(
kBi Ai P ss(Ai )−kAi Bi P ss(Bi )

)
ln

[
kBi Ai

kAi Bi

]
=

∑
i =1,2

J Ai→Bi

∆E

Ti

=
Q

T −∆T
− Q

T +∆T

' 2Q∆T

T 2 > 0

(3.20)

The first equality comes from the entropy production rate of the master equation proposed by

Schnakenberg[24]. In the large diffusion limit, P ss(X1) = P ss(X2), so the entropy production of

diffusion is zero. And the summation also cancels the entropy change inside the chemical reac-

tion system. Hence we obtain the second equality. Letting J Ai→Bi = kBi Ai P ss(Ai )−kAi Bi P ss(Bi )

to denote the total flux from state A to B and using the definition of Kramers transition rate

to relate the reaction rates to the energy landscape. J Ai→Bi∆E is the heat expelled to the
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environment in box i , so we obtain the thermodynamic form of the entropy production rate.

In the perturbative regime, the entropy production rate starts from the second order of∆T as

Ṡ = P eq (A;T )e−ε/T ∆E 2

T 4 ∆T 2 +O (∆T 3). (3.21)

As the deviation from equilibrium distribution also stars from the second order, we can relate

it to the entropy production rate as

P ss(A)

P eq (A;T )
= 1+ Ṡ

∆E

∆E +2ε

2e−(∆E+ε)/T
. (3.22)

Physically speaking, the entropy production rate quantifies the rate of dissipating energy. Thus

we can interpret the payoff of high-energy stabilization as the continuously increasing of

entropy in the environment. As we know the Boltzmann distribution maximizes the entropy of

a canonical ensemble, the NESS here thus should have lower entropy than the thermodynamic

equilibrium case. So the stabilization in a high energy state can also be named as maintaining

a low entropy state by dissipating energy.

3.5 Three-state system: dissipation-driven selection

In the last section, we showed that a two-state reaction system can stabilize itself in the high-

energy state by dissipating energy in a temperature gradient. Then we would like to study

a little bit more complex model, which is a three-state system, where the non-equilibrium

condition can lead to unbalance population of two states with equal energy. We call this

phenomenon dissipation-driven selection[14].

3.5.1 Selection in large-diffusion limit

The energy landscape of the three-state system is plotted in Fig. 3.3a. The two low-energy

states B and C have equal energy, and the transition between them is intermediated by the

high-energy state A. The asymmetry is introduced by the kinetic terms, that the energy barrier

from A to C is lower than the barrier from A to B . In equilibrium conditions, the two low

energy states have equal probabilities, only reflecting the energetic character of the system.

Then we put the three-state reaction system in a temperature gradient. Still, without loss of

generality, the temperature gradient is simplified as a two-box model coupled to different

temperature reservoirs, the evolution equation of the two-box three-state reaction-diffusion
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(a) Energy landscape of a three-state system (b) Selection strength, RC B

Figure 3.3 – a. The energy landscape of a three-state system. b. The selection strength
RC B ≡ P ss(C )/P SS(B).

system is

∂t P (Ai ) =
∑
X

(
kAi Xi P (Xi )−kXi Ai P (Ai )

)+dA(P (A j )−P (Ai ))

∂t P (Xi ) = kXi Ai P (Ai )−kAi Xi P (Xi )+dX (P (X j )−P (Xi )).
(3.23)

where X = B ,C , i , and j are indexes of the two boxes,dx is the transport rate and the transition

rates are of Kramers form. The energy of state A is ∆E higher than the energies of two low-

energy states. The barriers from A to the two low energy states are εB and εC . Therefore the

transition rate reads

kXi Ai = k0e−εX /Ti , kAi Xi = k0e−(εX +∆E)/Ti , (3.24)

where k0 is a constant and the temperatures of the two boxes are T1 = T −∆T and T2 = T +∆T .

Still, we are interested in the large diffusion limit under which the above equations are reduced

to Eq .3.1 with non-equilibrium transition rates k X Y = (kX1Y1 +kX2Y 2)/2. The three states here

is on a chain, so we know the NESS solution. To quantify the unbalance between the two low

energy states, we can define a quantity called selection strength:

RC B ≡ P ss(C )

P ss(B)
=

kC Ak AB

kB Ak AC

. (3.25)

When εB > εC , the selection strength RC B is positive, i.e. the state with a lower energy barrier

is favored. Then we would like to do some exploration of the parameters space to see how
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(a) ∆εÀ εC (b) ∆ε¿ εC /B

Figure 3.4 – Contour plots of the selection strength, RC B , for small energy difference and large
energy difference.

they change the selection strength. From Fig. 3.3b, we can observe that when keeping the

barrier energy difference constant, the selection strength initially increases with temperature

difference and then decreases back to 1. So there is an optimal temperature difference that

maximizes the selection.

3.5.2 Optimal temperature for selection of three-state system

For small temperature differences, the can be obtained by the perturbation method. And in the

last section, we see that in the non-perturbative regime, the chemical reaction is dominated

by the reactions in the high-temperature box so that the system evolves to an equilibrium

state corresponding to the Boltzmann distribution of the high temperature, and the unbalance

vanishes. So an optimal temperature that maximizes the selection strength exists between the

perturbative regime and large-deviation regime. By numerical exploration, we find that there

are two cases for which we can give well approximated expressions for optimal temperature.

One is for large barrier difference∆ε = εB −εC À εC and the other is for small barrier difference

∆ε¿ εB/C .

Optimal temperature when∆εÀ εC

When the barrier difference is large enough, the slow reaction, the reaction between state

B and A, is always operating in the large-deviation regime. Therefore the ratio between the

NESS probabilities of B and A is P ss(B)/P ss(A) = exp(∆E/(T +∆T )), which does not contain

the kinetic parameters of the reaction,∆T εB /T 2 À 1. So now we need to focus on the slow

reaction. Supposing the reaction between state A and C is still operating in the perturbative
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regime, we can find RC B in the first two orders of∆T as

lim
∆ε
εC

→+∞
RC B = 1+∆E∆T

T 2 −∆EεC∆T 2

T 4 +O (4∆T 3).

A local maximum is predicted by this expression, which is ∆T ∗ = T 2/(2εC ). To check the

correctness of this maximum, see Fig. 3.4a, where it predicts quite well.

Optimal temperature when∆ε¿ εC /B

When the barrier difference is small, both the fast and slow reaction operates in the same

regime. Hence we can not just simply fix one and study the other. Then, let us first inspect the

two solved regimes.

Perturbative regime When both A �B and A �C are operating in the perturbative regime,

i.e∆T εB/C /T 2 ¿ 1 we can expand the selection strength in power of∆T as

RC B = 1+∆E(εB −εC )∆T 2

T 4 +O (∆T 4). (3.26)

In this scenario, the selection strength increases quadratically with ∆T . Apparently, RC B

cannot go to infinity. Thus we need to discuss the large-deviation case.

High-tempearture regime In the high-temperature regime or the so-called large deviation-

regime, as we discussed in Sec 3.4, the transition rate in the high-temperature box is signifi-

cantly faster than in the cold box. We can thus expand the NESS probably distribution from the

Boltzmann distribution of T = Thi g h by treating the reaction in the cold box as a perturbation.

The consequence selection strength is given by

RC B = 1+e−εC∆T /T 2 −e−εB∆T /T 2
. (3.27)

With increasing of∆T , the selection strength asymptotically relaxes to 1.

These two solutions suggest that the optimal temperature should appear between these two

regimes. Thus it can be estimated by comparing∆T (εB +εC )/(2T 2) with 1. We can guess the

optimal temperature ∆T ∗ ' 2T 2/(εC +εB ). As plotted in Fig. 3.5b and Fig. 3.4b, it’s a good

guess.
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(a) (b)

Figure 3.5 – a. Unbalance between P (C ) and P (B) as a function of temperature difference. The
three-state reaction system is coupled to two thermal reservoirs with temperature T1 = T −∆T
and T2 = T +∆T . The unbalancing is maximized around∆T ∗ = 2T 2/(εC +εB ), i.e. the middle
between the perturbative regime and non-perturbative regime. b. The perturbative regime
and non-perturbative regime. For a small temperature difference, called the perturbative
regime, the selection strength grows quadratically with∆T . In the non-perturbative regime
(but still∆T /T ¿ 1), the high-temperature transition rates dominate and abolish the selection
when∆T gets larger.

3.5.3 Entropy production

As we mentioned in the title of this section, the temperature gradient-induced selection

can be interpreted as the dissipation-driven selection. The physical quantity characterizing

dissipation is the entropy production rate. Let us focus on the pure perturbative regime, and

the selection strength is given by Eq. 3.26. The entropy production is

Ṡ =
∑

i =1,2

∑
X =B ,C

J Ai→Xi

∆E

Ti
= P eq (A;T )(e−εC /T +e−εB /T )

∆E 2∆T 2

T 4 . (3.28)

Now we can relate the selection strength to the entropy production rates as

RC B = 1+ Ṡ

∆E

1

P eq (A;T )e−εB /T

∆ε

1+e∆ε/T
. (3.29)

This result tells us that selection strength is positively correlated to the entropy production

rate. The entropy production in the environment can also be understood as a negative entropy

flow to the reaction system so that the reaction system feeds on negative entropy to be able

to distinguish two equal energy states. The ability to identify the internal kinetic structure is

a form of information. By dissipating energy, the reaction system reaches a more organized

state than an equally populated equilibrium state.
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3.6 Autocatalysis

3.6.1 The mechanism of autocatalysis

(a) The energy landscape of autocatalytic reaction. (b) The energy landscape of three-state system.

Figure 3.6 – a. The energy transition state A A and AB can be eliminated to find the coarse-
grained autocatalysis energy landscape. b. The energy barriers of both sides are lowered by an
amount of δ in an autocatalytic reaction.

A reaction called autocatalytic is when the product can catalyze its own reaction. The basic

mechanism of autocatalytic particle B can bind with the substrate to lower the energy of the

intermediate state AB , and then goes to BB and finally unbinding to release the product B , as

shown in Fig. 3.6b. The overall chemical reaction can be written as

A+B � AB �BB � 2B , (3.30)

where AB and BB are the intermediate states. In seek of simplicity, we can coarse-grain the

transition state by counting their effect as a lowering of the energy barrier by an amount of δ.

The coarse-grained energy surface is shown in Fig. 3.6a. The reaction equation is non-linear

d

d t
P (A) = + f cat

AB (P (B),P (A))

d

d t
P (B) = − f cat

AB (P (B),P (A)) where f cat
AB (P (B),P (A)) = −kcat

B A P (A)P (B)+kcat
AB P (B)2.

(3.31)

Under the coarse-grained scenario, only two new parameters is introduced: the lowered

energy δ and a concentration-dependent parameter α. Hence the autocatalytic rate reads

kcat
B A =αeβδkB A , kcat

AB =αeβδkAB , (3.32)
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where α is the other new parameter, which is a constant characterizing the magnitude of the

transition rate, we can immediately see that the reaction rate is nothing but the direction-

transition rate multiplying a temperature-dependent prefactor.

3.6.2 Three-state selection with autocatalysis

Now we can add a new species C to the autocatalytic reaction system as we did in the direct-

transition reaction system, and make the energy barrier from A to C lower than that from A to

B to induce the kinetic-symmetry breaking.

kcat
C A =αeβδkC A , kcat

AC =αeβδkAC where kC A = k0e−βεC > k0e−βεB . (3.33)

Placing the system in two connected boxes with different temperatures so that the system is in

non-equilibrium condition. The corresponding reaction-diffusion equation is

∂t P (Ai ) =
∑
X

P (Xi )
(
kcat

Ai Xi
P (Xi )−kcat

Xi Ai
P (Ai )

)
+dA(P (A j )−P (Ai ))

∂t P (Xi ) = P (Xi )(kcat
Xi Ai

P (Ai )−kcat
Ai Xi

P (Xi ))+dX (P (X j )−P (Xi )),
(3.34)

where X = B ,C and the subscript i denotes the index of the box.The time evolution of the

system can be obtained numerically. And we can also from the numerical result to obtain

the NESS. We use the ratio of the probability of species B to species C to characterize the

strength of selection. Starting from the initial state P (B)(1) = P (C )(1) = P (B)(2) = P (C )(2) = 0.25

and letting the system relax to steady-state for different external conditions, we can get the

result as shown in Fig. 3.7.

Figure 3.7 – A comparison of selection strength of direct-transition reaction and autocatalytic
reaction.

We can see that autocatalysis also shows an optimal temperature for selection and always
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shows to stronger selection than the direct-transition reaction. Note that we used very large

diffusion coefficients which means we can use an infinite diffusion limit to obtain the analytic

solution.

3.6.3 Analytic solution in the large diffusion regime

In the large diffusion limit, the probability of the same species in two boxes is equal P (X1) =

P (X2) = 1
2 P (X ). One can sum up two equations of the same species in two boxes to obtain the

effective reaction equation

d

d t
P (A) =

1

2

(
kcat

AB P (B)2 −kcat
B A P (A)P (B)+kcat

AC P (C )2 −kcat
AC P (A)P (C )

)
d

d t
P (B) =

1

2

(
−kcat

AB P (B)2 +kcat
B A P (A)P (B)

)
d

d t
P (C ) =

1

2

(
−kcat

AC P (C )2 +kcat
AC P (A)P (C )

)
,

(3.35)

where the effective reaction rate is the average of the rates in two boxes. The fixed point of this

equation is determined by the linear part:

Rcat
C B (εB ,εC ,δ) =

P (C )

P (B)
=

kcat
B A kcat

AC

kcat
AB kcat

C A

. (3.36)

Writing it in an explicit form

Rcat
C B =

(e−β1(εB−δ) +e−β2(εB−δ))(e−β1(∆E+εC−δ) +e−β1(∆E+εC−δ))

(e−β1(εC−δ) +e−β2(εC−δ))(e−β1(∆E+εC−δ) +e−β1(∆E+εC−δ))

= 1+ (e−β1εC e−β2εB −e−β1εB e−β2εC )(e−β1∆E −e−β2∆E )∑
i e−βi (∆E+εC +εB −2δ)∑

i eβi δ
+ (e−β2εC e−β1(∆E+εB ) +e−β1εC−e−β2(∆E+εB ))

= 1+ g1(∆E ,εC ,εB ;β1,β2)

g2(∆E ,εC ,εB ,δ;β1,β2)+ g3(∆E ,εC ,εB ;β1,β2)
.

(3.37)

We can see that g1, g2, g3 > 0, which means RC B > 1, i.e.state C is favored. Note that only g3

contains the contribution of autocatalysis, δ. And recall that for the direct transition, this ratio

reads

RC B = 1+ g1

g2(δ = 0)+ g3
. (3.38)
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They are differed only by the δ in g2. And we can then show the inequality:

g2(δ) =

∑
i e−βi (∆E+εC+εB−2δ)∑

i eβiδ
<

∑
i e−βi (∆E+εC+εB )

2
= g2(δ = 0), (3.39)

that means Rcat
C B > RC B , i.e. the autocatalysis can boost selection in the large diffusion limit.

Indeed, this result is just a trivial extension of the selection of direct transition. In the large

diffusion limit, the non-linear term does not change the fixed point. What changed the

strength of selection is just the lowered energy barrier. We can construct a direct-transition

reaction with energy εX = εX −δ to reach the same steady state as the autocatalytic reaction

Rcat
C B = RC B (εB → εB −δ,εC → εC −δ), (3.40)

3.6.4 Small diffusion - autocatalysis can either boost or suppress the selection

Boosting selection with δ = 0

In previous discussions, we saw that the effect of autocatalysis is directly from the lowering of

two energy barriers. If the autocatalytic prefactor does not depend on temperature (i.e. δ = 0),

the autocatalysis will give the same result as what the direct transition gives. However, when

diffusion is small, P (X1) 6= P (X2), gives the temperature-dependent non-linear effect. Thus

autocatalysis can modulate the strength of selection again.

Figure 3.8 – Autocatalysis can boost selection even when it does not change the kinetic barriers.

From Fig. 3.8, we can see that the selection strength is larger with the non-linear term in

comparison to the direct transition case. And as expected, it asymptotically approaches to

direction transition case as D increases.
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Suppressing selection for slow diffusion

Another interesting observation is that when the reaction is faster than diffusion (α,k0 À D),

autocatalysis can suppress the selection. As shown in Fig. 3.9, RC B of the autocatalytic reaction

is smaller than that of direction transition for a small diffusion coefficient. And for the large

diffusion coefficient, it enhances selection as predicted by Eq. 3.40.

Figure 3.9 – Autocatalysis can suppress selection when the diffusion coefficient is very small.
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4 Time-periodic temperature driving
non-equilibrium chemical reactions

We have studied a reaction system brought out of equilibrium by a temperature gradient. The

diffusion-reaction system maintained in a non-equilibrium steady state (NESS) shows bias to

reactions with higher energy-dissipating rates. NESS is not only out of equilibrium state, but

a periodic variation of external parameters can also mimic a NESS for both continuous and

discrete system[25, 26]. The external parameters can be a periodically-varying temperature

or chemical potential. This type of model are usually referred to as stochastic pumps(SP)[15,

27, 28]. Unlike most papers that discussed a time-periodic variation of energies and kinetic

barriers, here we need to we introduce a periodic variation of (inverse-)temperature to mimic

a temperature gradient-driven NESS.

4.1 Master equation with time-dependent transition rates

The master equation for an n-state reaction system of time-dependent transition rates reads

∂t pi (t ) =
∑
j 6=i

(ki j (t )p j (t )−k j i (t )pi (t )). (4.1)

For a thermodynamic system, the transition rates are of Kramers form

ki j (t ) ≡ k j→i (t ) = k0 exp
[−β(t )Ei j

]
, (4.2)

where Ei j = ε+max{Ei −E j ,0} is the activation energy for the transition from state j to i , and

k0 is the rate constant. The thermodynamic parameter of the reservoir varies in time and leads

to the transition rates being time-dependent.
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4.1.1 Near-equilibrium approximation

The near-equilibrium approximation means that the time-dependent part can be treated as

a small perturbation to a fixed temperature T (t ) = T0 +δT1(t ). The time-dependent part is a

periodic function with zero mean and period of τ. Let us suppose the time-dependent part of

the form T1(t ) = T̃1
p

2sinωt . Hence the average temperature is T (t ) = T0 and the variance of

the temperature is Var(T ) = δ2T̃1
2
. Since the perturbation is small, the inverse temperature

can be expressed in a perturbative form:

β(t ) =β0 +δβ1(t ) where δ¿ 1, (4.3)

where β1(t) = T̃1(t)/T 2
0 . For convenience, we use the inverse temperature in the following

discussion. The transition rate can be expanded in powers of the perturbative (inverse-)

temperature as

ki j (t ) =
∞∑

n=0
δnk(n)

i j =
∞∑

n=0

1

n!
δn(−β1(t )Ei j )nk(0)

i j . (4.4)

The n-th order term is k(n)
i j = 1

n! (−β1(t )Ei j )nk(0)
i j . The probability distribution is also perturbed

by the equilibrium distribution. So we do the same expansion for the probability distribution

and find

pi (t ) = p(0)
i (t )+δp(1)

i (t )+δ2p(2)
i (t )+O (δ3). (4.5)

Substituting these two expansions into the master equation and collecting all terms of the

same order of δ, we obtain

0th order : ∂t p(0)
i =

∑
j 6=i

(
k(0)

i j p(0)
j −k(0)

j i p(0)
j

)
1st order : ∂t p(1)

i =
∑
j 6=i

(
k(0)

i j p(1)
j −k(0)

j i p(1)
i +k(1)

i j p(0)
j −k(1)

j i p(0)
i

)
2nd order : ∂t p(2)

i =
∑
j 6=i

(
k(0)

i j p(2)
j −k(0)

j i p(2)
i +k(1)

i j p(1)
j −k(1)

j i p(1)
i +k(2)

i j p(0)
j −k(2)

j i p(0)
i

)
.

(4.6)

4.1.2 Zeroth-order and First-order solution

The zeroth-order equation describes a system in contact with a fixed-temperature heat bath.

Such as system will relax to an equilibrium state which obeys detailed balance condition

p(0)
i /p(0)

j = k(0)
i j /k(0)

j i = e−β(Ei−E j ). The detailed balance ensures the net flux between any two

states is zero, i.e. the flux in the opposite direction is equal and cancels each other. There-

fore we can denote the flux from state j to i as J (0)
i j = k(0)

i j p(0)
j , which equals to J (0)

j i = k(0)
j i p(0)

i .
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Substituting the equilibrium solution of the zeroth-order into the first-order equation gives

∂t p(1)
i =

∑
j 6=i

(
k(0)

i j p(1)
j −k(0)

j i p(1)
i −β1(t )Ei j J (0)

i j +β1(t )E j i J (0)
j i

)
=

∑
j 6=i

(
k(0)

i j p(1)
j −k(0)

j i p(1)
i −β1(t )(Ei j −E j i )J (0)

i j

)
=

∑
j 6=i

(
k(0)

i j p(1)
j −k(0)

j i p(1)
i −β1(t )(Ei −E j )J (0)

i j

)
.

(4.7)

Since the β1 have zero mean over one period, we can take a one-period average of the above

equation and find

0 =
∑
j 6=i

(
k(0)

i j p(1)
j −k(0)

j i p(1)
i

)
. (4.8)

The normalization condition requires
∑

j p(1)
i (t) = 0, hence we find the one-period average

of first-order probabilities are all zero, p(1)
i = 0. Then we need to focus on the second-order

solution, where the non-equilibrium effect starts to appear. Before that, we need to calculate

one more quantity that will appear in the second-order equation, that is β1p(1)
i . Multiplying

β(t ) on both sides o Eq. 4.7 and averaging over one period, the RHS and LHS read

LHS =
1

τ

∫ τ

0
β1∂t p(1)

i d t

=
1

τ
ω

∫ τ

0
P̃ (1)

i β̃i cos(ωt −φi )sin(ωt ) d t ←-p(1)
i = P̃ (1)

i sin(ωt −φi ),β1 = β̃1 sin(ωt )

=
ω

2
p̃(1)

i β̃i sinφi

=ωβ1p(1)
i tanφi

RHS =
∑
j 6=i

(
k(0)

i j p(1)
j β−k(0)

j i p(1)
i β−β2

1(Ei −E j )J (0)
i j

)
.

(4.9)

The key assumption here is that the first-order solution has the form of p(1)
i = p̃i

(1) sin(ωt −φi ),

whereφi is the phase delay with respect to the phase of temperature. This assumption is based

on the dissipative nature of the reaction system, which does not have an intrinsic periodicity,

so all its behaviors follow the externally driven term, here is the temperature. And it needs

some time to respond to the externally driven term, so there should be a phase delay. The

time scale of the LHS and RHS are characterized by ω and k(0) respectively, so we can compare

them and find the solutions for the following two limits.
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Fast-varying temperature

When the (inverse) temperature varies very fast, i.e. ωÀ k(0), the LHS is much larger than the

RHS, thus we get

β1p(1)
j tanφi = 0. (4.10)

Intuitively speaking, p(1)
j can not catch up with the fast-varying temperature and thus the

phase difference should not be zero. Therefore β1p(1)
j = 0.

Slowly-varying temperature

When the (inverse) temperature varies very slowly, i.e. ω¿ k(0), the LHS is much smaller in

comparison with RHS, so we can drop it and find

0 =
∑
j 6=i

(
k(0)

i j p(1)
j β1 −k(0)

j i p(1)
i β1 −β2

1(Ei −E j )J (0)
i j

)
. (4.11)

Then we can get the solution of β1pi using generalized detailed balance condition

p(1)
j β1 +β2

1E j p(0)
j

p(1)
i β1 +β2

1Ei p(0)
i

=
k(0)

j i

k(0)
i j

= e−β0(E j−Ei ). (4.12)

along wit the normalization condition
∑

i p(1)
i = 0, we get

p(1)
i β1 =β2

1(〈E〉−Ei )p(0)
i . (4.13)

4.1.3 Second order equation

Now we consider the fast-varying temperature case, under which p(1)(t )β1(t ) are all zero. We

can then substitute all the above results into the second-order equation and also integrate

both sides over one period

0 =
∑
j 6=i

(
k(0)

i j p(2)
j −k(0)

j i p(2)
i + 1

2
β2

1(E 2
i j −E 2

j i )J (0)
i j

)
. (4.14)

Here the detailed balance condition is broken by an additional term 1
2β

2
1(E 2

i j −E 2
j i )J (0)

i j . Note

that this term is induced by the perturbative temperature and also has a dependence on the

kinetic barrier. So the second-order solution is not solely determined by energetic parameters

but also by kinetic parameters of the reaction network. In the next section, we will use this
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result to show selection due to different dissipation rates and non-equilibrium conditions in

the three-state system.

4.2 Three-state system and the dissipation-driven selection

Let us consider the three-state reaction system proposed in Sec. 3.5 in a periodic-varying

(inverse) temperature, β(t) = β0 +δβ1(t). In the perturbative regime, with the assumption

of slowly-varying temperature, we can find the zeroth-order solution is the Boltzmann equi-

librium distribution, and the first order is zero. Thus, the selection starts with the second

order. Using the above result, we can directly write down the steady-state equation for the

one-period-averaged second-order probability distribution of the three-states system

0 = k(0)
A→X p(2)

A −k(0)
X→A p(2)

B − β2
1

2
(2εX∆E+∆E2)J (0)

A→X

0 = p(2)
A +p(2)

B +p(2)
C ,

(4.15)

where εX is the kinetic barrier from state A to X and X = B ,C are the two low energy states. The

last equation comes from the conservation of the total probability. For such a linear system,

we can get the solution easily and calculate the selection strength

RC B ≡ P (C )

P (B)
≡ pC

pB
= 1+∆Eβ2

1(εB −εc )δ2 +O (δ4). (4.16)

Figure 4.1 – Numerical and perturbative solution of selection strength of the three-state system
in periodic temperature with parametersβ0 = 1,β1(t ) = sinωt ,ω = 2π,∆E = 1, εC = 0.3, εB = 0.1.
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This result is very similar to what we have obtained for the temperature gradient case. For

the numerical simulation, the time-periodically-varying temperature is β =β0 +δsinωt . And

we can see from Fig. 4.1 that the two results match quite well for small δ, as expected for the

near-equilibrium approximation.

4.2.1 Entropy production

Using Schnakenberg’s formula of entropy production rate, the entropy production rate over

one period is

Ṡ =
1

2

∫ τ

0
d t

∑
i

(β0 +δβ1)
∑
j 6=i

(ki j p j −k j i pi ) ln

[
ki j

k j i

]
= −1

2

∫ τ

0

∑
i

∑
j 6=i

(ki j p j −k j i pi )(β0 +δβ1)∆Ei j

=
1

4
δ2

∫ τ

0

∑
i

∑
j 6=i

(k(0)
i j p(0)

j Ei j −k(0)
j i p(0)

i E j i )β2
1(t )∆Ei j

=
1

2
δ2β2

1

∑
i

∑
j 6=i

J (0)
i j ∆E2

i j .

(4.17)

For the three-state system, it is written as

Ṡ = δ2β2
1∆E2p(0)

A (k(0)
A→C +k(0)

A→B )

= δ2β2
1∆E2p(0)

A e−β0εC (1+e−β0(εB−εC )).
(4.18)

Then we can relate it to the selection strength

RC B = 1+ Ṡ

∆E

1

P eq (A,T0)e−β0εB

∆ε

1+eβ0∆ε
, (4.19)

where∆ε = εB −εC . This expression is an analogy to Eq. 3.26 and indicates that the selection

is also driven by dissipating energy.

4.3 Physical interpretations and applications

4.3.1 Chemical reactions in convection current

We have seen that time-periodically varying temperatures can maintain a system out of

equilibrium and induce selection, but does such a system exist in nature? The answer is

yes. Moreover, it might play a more important role in the origins of life in comparison to

the reaction-diffusion mechanism in a temperature gradient. Imaging chemical reactions

near hydrothermal vents on the seafloor, the temperature gradient is so sharp that the mass
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transport is governed by convection instead of diffusion. Reacting chemicals carried by the

convection current go and back between the hot and cold regions and feel a time-periodically

changing temperature.

4.3.2 Reaction systems coupled to small reservoirs

A chemical reaction system with fixed rates is required to be coupled to an ideal infinite large

heat reservoir so that the temperature fluctuation is negligible. However, in real life, the heat

reservoir is finite, which means we must take account of the fluctuation of temperature, which

can be written as an average temperature plus noise term

T = 〈T 〉+
√
〈∆T 2〉η(t ), (4.20)

where η(t ) is a Gaussian white noise, 〈η(t )〉 = 0, 〈η(t )2〉 = 1. And the inverse temperature reads

β =
1

T
=

1

〈T 〉 +
√

〈∆T 2〉
〈T 〉2 η(t ). (4.21)

Comparing this expression with the time-periodic varying case, we see an analogy: β0 = 1/〈T 〉
and δβ1(t ) =

√
〈∆T 2〉/〈T 2〉η(t ). The only difference is that the time-periodically varying part

is replaced by a noise term. However, we can still follow all steps of the previous derivation but

replace the one-period integral with long time average and finally obtain very similar results

RC B = 1+∆E
〈∆T 2〉
〈T 〉4 (εB −εC )+O (〈∆T 2〉2). (4.22)

This result shows how chemical reaction systems respond to temperature fluctuation. And

since it is a fluctuation, the near-equilibrium assumption is guaranteed by itself, so the

perturbative solution is more suitable.
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5 Thermophroesis

5.1 Introduction

In a dispersion system, the temperature gradient can trigger particles to migrate to a cold

or hot region without a real external force. This effect is commonly called the Ludwig-Soret

effect, thermophoresis, or thermodiffusion. These phenomena have been observed in various

mixtures, such as colloidal suspension, bimolecular solution, and fluid mixture. Since it was

firstly discovery by Ludwig in 1856, a lot of experimental and theoretical have been done,

but a wildly accepted theoretical explanation is still lacking [29–31]. The difficulty is that the

main experimental features, such as the amplitude of the thermophoretic effect, are system-

specific and the detailed microscopic nature of particle/solution interaction seems to be

non-negligible [32]. Thermophoresis, as a typical non-equilibrium system is interesting by

itself. Moreover, it is a promising tool to control microparticles in dispersion systems.

Thermophoresis is characterized by a drift flux, which is induced by the temperature gradient.

This flux competes with the Brownian motion, i.e. the Fick’s diffusion flux, to form a non-

uniform concentration distribution. Therefore the total flux is

J = −DT c∇T −D∇c. (5.1)

where c is the concentration of particle, DT is the thermodiffusion coefficient, D is the Fick’s

diffusion coefficient. The first thermophoretic term tends to build up a concentration gradient

along the temperature gradient, while the second diffusive term tends to flatten the concentra-

tion distribution. The thermodiffusion coefficient is defined under a balance between these

two terms, i.e. the steady state when total flux equals to zero.

DT ≡−D∇c

c∇T
. (5.2)

Another widely used parameter to quantify thermophoresis is ST = DT
D , namely the Soret

coefficient. The Soret coefficient can be positive or negative, corresponding to the preference
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of cold or hot regions for particles, respectively.

There exist two different types of models to explain thermophoretic phenomena, hydrody-

namic and thermodynamic models [33]. The hydrodynamic picture considers the pressure

difference caused by fluid thermo-osmotic flow around a particle [34] while the thermo-

dynamic model constructs a thermodynamic gradient or excess enthalpy to describe the

thermophoretic force.

We recently reported that multi-state particles show thermophoresis-like behavior [14]. And

here we will give a complete picture of the multi-state contribution to thermophoresis. It

is believed that the multi-state contribution should dominate the thermophoresis of small

particles, as the small particles are too small to feel the temperature gradient directly.

In Sec 5.2, we address that the non-uniform concentration of particle dispersion can come

from positional dependent diffusion coefficient. In Sec 5.3, we propose a multi-state particle

model to show how can temperature gradient induces a positional-dependent diffusion coeffi-

cient. The multi-state model is then generalized to continuous chemical space cases. For parti-

cles without distinct states, such as spherical colloidal particles, we solve the Kramers equation

using the time-scale separation approach to illustrate that the velocity can be regarded as an in-

ternal state and thus lead to thermophoresis. The contribution of particle-particle interaction

is also included as a possible origin of the negative Soret coefficient.

5.2 Spatially dependent diffusion coefficient

Non-uniform distribution of particle suspension has been observed in various inhomogeneous

system[35]. This kind of phenomenon can be described by the generalization of Fick’s diffusive

flux, that is the Fokker-Planck flux. Unlike Fick’s flux, J f i ck = D∇c, the Fokker-Planck flux put

the diffusion coefficient inside the derivative, JF P = ∇(D(x)c). So that a drift term comes out

consequently

JF P = − c∇D︸ ︷︷ ︸
drift flux

− D∇c︸ ︷︷ ︸
diffusion flux

. (5.3)

The drift flux is nonzero if the diffusion coefficient depends on the position. Comparing this

drift flux with the thermophoretic drift flux in Eq. (5.1), one can notice that the thermodiffusion

coefficient emerges from the temperature-dependent diffusion coefficient, DT = ∇D
∇T = ∇T D.

The role of temperature gradient in thermophoresis is to turn the temperature dependence of

the diffusivity into positional dependence. This effect was pointed out in very early research

on thermophoresis by Chapman in 1928 [36] and was recently discussed by Yang et al. [37, 38].

Under this scenario, the key point to understanding thermophoresis is to find the temperature

dependence of the diffusion coefficient. Here we propose a multi-state particle model, where

a state of a particle is associated with an energy and a diffusion coefficient, to show how the

temperature affects the effective diffusivity of the particle.
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5.3 Multiple-state particle in temperature gradient

5.3.1 Multi-state particle

The multi-state model captures the internal degrees of freedom of a particle. For example, a

polymer chain is composed of many monomers, so the different configurations of a polymer

chain can be regarded as a collection of states. According to the Einstein-Stokes relation,

the diffusion coefficient depends on the size of the particle; thus, different configurations of

the polymer chain can have different sizes, which leads to different diffusion coefficients. In

1967, T. N. Khazanovich [39] showed that one could integrate over the configuration space of a

polymer chain to find thermophoresis behavior. This framework can be extended to a more

general reaction-diffusion system, where the reaction characterizes the transition between

states of the particle.

Discrete states

Let us start from a simple model, a particle with n discrete states {i } = (1,2, . . . ,n). The chemical

reaction here is isomerization reaction Xi ↔ X j . The transitions among the discrete states are

captured by a Markov jump process. Without loss of generality but with a lot of simplicity, we

can restrict ourselves to one-dimensional space. Then the reaction-diffusion equation reads

∂t ci = Di∂
2
x ci +

n∑
j =1

Ki j c j , (5.4)

The first term on the right-hand side captures the diffusion in space, where Di is the diffusion

coefficient of state i . For simplicity, we assume that the diffusion coefficient for a single state is

constant in space. While the second term is the reaction part, where state i can spontaneously

jump to state j with a rate of Ki j . In order to recover Boltzmann distribution in chemical space

under the non-diffusion limit, the transition should be Arrhenius-like, i.e. Ki j = K j i e−β(E j−Ei ).

By summing over all states, the reaction terms cancel, as required by the conservation of

probability.

∂t ctot =
∑

i
∂2

x (Di ci ) = ∂x (∂x
∑

i
Di ci︸ ︷︷ ︸

−Jtot

). (5.5)

Note that the total flux can be written in a Fokker-Planck flux form by defining D(x) ≡
∑

i Di ci∑
i ci

=

〈Di 〉. Consequently, the positional dependence of the diffusion coefficient emerges from the

temperature-induced distribution in chemical space.

In the steady-state, i.e. ∂t ctot = 0. This position-dependent diffusion coefficient together with

the non-flux boundary condition will induce the non-uniform distribution of particles, which

is characterized by

0 = Jtot = −〈D〉∂x ctot − ctot∂x〈D〉 (5.6)
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(a) Chemical reaction network

(b) Positive Soret coefficient (c) Negative Soret coefficient

Figure 5.1 – a. Contour plot of the energy landscape of a six-state chemical reaction network,
the local minimums (potential wells) can be regarded as discrete states. b. When the ensemble
covariance of energies and diffusion coefficients of states are positive, the Soret coefficient is
positive so that the particles accumulate on the cold side. c. For the negative covariance, the
particle has a negative Soret coefficient and tend to stay on the hot side
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In comparison with the definition of thermophoresis, the thermodiffusion coefficient, as well

as the Soret coefficient comes out naturally:

DT = ∂T 〈D〉, ST ≡ DT

〈D〉 =
∂T 〈D〉
〈D〉 . (5.7)

Supposing local equilibrium condition, i.e. the transition between states is much faster than

the diffusion, the local state distribution follows Boltzmann equilibrium, ci ' ctot e−βEi /Z .

Thus the effective diffusivity can be written in an exact form D = 1
Z

∑
i Di e−βEi . Then the

corresponding Soret coefficient is

ST =
〈ED〉−〈E〉〈D〉

〈D〉T 2 =
Cov(E ,D)

〈D〉T 2 , (5.8)

where 〈·〉 = 1
Z

∑
i · e−βEi . This expression provides physical insights into the thermophoresis

problem from an energetic perspective. If the energy and diffusion coefficient are positively

correlated, i.e. the high energy state particle diffuses faster, then the Soret coefficient is positive,

and the particles tend to move from the hot region to the cold region and vice versa.

Continuous chemical space

The above result can be generalized to the continuous chemical space, which is expanded

by the internal degrees of freedom of a molecule/particle. The reaction-diffusion equation,

as a coarse-grained description of the transition among local minimums in the continuous

chemical space (Fig ??), is not valid anymore. The Langevin equation, Newton’s equation of

motion with noise term, can capture both the chemical space and real space in a coherent

manner. Let us suppose the viscosity is high enough so that the system is in the over-damped

regime. The over-damped Langevin equation reads

ẋ =
√

2Dx (x, q)η(t ). (5.9)

The chemical space is expanded by internal degrees of freedom q = [q1, . . . , qn]. And a given

configuration of internal degrees of freedom is associated with energy U (q). The equation of

motion of the internal states is also characterized by a Langevin equation

q̇ = − 1

γq
∇qUq (q)+

√
2Dq (q)ηq (t ), (5.10)

where Uq (q) is the chemical potential of a given configuration q, Dq (q) is the effective diffusion

coefficient in chemical space and ηq (t ) is white noise. Then the corresponding Fokker-Planck
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equation is

∂t P =∇q

(
1

γq
P∇qUq +∇q (Dq P )

)
︸ ︷︷ ︸

−Jq

+∂x (∂x (Dx P ))︸ ︷︷ ︸
−Jx

.
(5.11)

where P ≡ P (x, q), is the probability distribution on the position-chemical space. Ther-

mophoresis requires chemical-state-dependent diffusion coefficient, Dx (q) ≡ a(q)D̃x , here

the state-dependence is characterized by a(q) ∼ 1 and a constant D̃x denotes the amplitude.

The fast reaction limit is of the most interest. For continuous chemical space, the fast reaction

limit means the diffusion in the chemical space is much faster than the real space, Dq À Dx .

Let δ≡ D̃x
Dq

, the time-independent (steady-state) F-P equation reads

a(q)δ∂x P = −∂2
q P − 1

kB T (x)
∂q (P∂qUq ). (5.12)

Then the probability density can be expanded in terms of δ:

P = P (0) +δP (1) +δ2P (2) +O (δ3). (5.13)

Substituting the expanded probability distribution back to the F-P equation and collecting

terms with the same order of δ gives

0 = −∂2
q P (0) − 1

kB T (x)
∂q (P (0)∂qUq )

a(q)∂x P (0) = −∂2
q P (1) − 1

kB T (x)
∂q (P (1)∂qUq ).

(5.14)

The zeroth-order equation simply gives the Boltzmann distribution in chemical space mul-

tiplying an ungerminated function φ(x), which needs to be determined by the first-order

equation.

P (0)(x, q) =φ(x)exp

(
− Uq

kB T (x)

)
. (5.15)

Note that the accessible chemical space is finite, hence there is no flux from l i mq→±∞, we can

integrate the above result over the whole chemical space to get the marginal distribution

∂2
x

φ(x)Zq︸ ︷︷ ︸
Φ(x)

1

Zq

∫ ∞

−∞
dq φ(x)a(q)exp

(
− Uq

kB T

)
︸ ︷︷ ︸

De f f /D̃x

 = 0, (5.16)

where Φ(x) =
∫

d dq P0(x, q) is the marginal distribution along x, the other term is the average

of the Dx in q space. Writing the ensemble average in chemical space as 〈·〉q = 1
Zq

∫
q dq ·
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exp
(
− Uq

kB T

)
, we obtain

∂2
x (Φ(x)〈Dx〉q ) = 0, (5.17)

which are the same as the discrete state case. The Soret coefficient can also be written as

ST =
∂T 〈Dx〉q

〈Dx〉q
=

Cov(E ,Dx )

〈Dx〉q
. (5.18)

5.3.2 Particle with single chemical-state

In all the above derivations, we suppose the diffusion coefficient of each state does not depend

on temperature. However, if we introduce the temperature dependence of single species

diffusivity, the above derivation still holds. And we can even see thermophoresis for single-

state particles. The basic temperature dependence of D is from the Stokes-Einstein relation,

D = kB T
γ , and the corresponding Soret coefficient is ST = 1

T . However, the validity of the

Stokes-Einstein relation in the non-equilibrium state is under debate. In the scheme of the

over-damped Langevin equation, this problem turns to the Ito-Stratonovich dilemma [37,

40], i.e. what is the proper stochastic integration convention for multiplicative noise. To

avoid this problem, we can solve the Kramers equation instead. The Kramers equation is the

Fokker-Planck equation of the under-damped Langevin equation, where the x-dependent

multiplicative noise does not couple with the velocity. The Kramers equation reads

∂t P + v∂x P =
γ

m
∂v

(
vP + T (x)

m
∂v P

)
, (5.19)

where P ≡ P (x, v, t) is the probability distribution in the position-velocity space, γ is the

friction,m is the mass of particle, T (x) is the temperature, which depends on position. What

we are interested in is the overdamped region, i.e. the friction dominates over the inertial term.

The overdamped regime can be defined by a physical quantity with the scale of time τ = γ
m ¿ 1,

the ratio of mass to fraction provides a much faster time scale than all other physical processes,

thus we can employ time-scale separation technics to solve for the marginal distribution (See

supplementary material). Finally, we can reach a Smoluchowski equation

∂tΦ(x, t ) = ∂x

[
∂x

(〈
v2

〉
〈1〉 Φ(x, t )

)]
, (5.20)

where 〈·〉 =
∫

v · e
−v2

T (x) dv , Φ is the marginal probability distribution in positional space. This

equation is the standard Smoluchowski equation if we identity D(x) = 〈v2〉
〈1〉 ∝ T (x). Then the

corresponding Soret coefficient is ST = 1
T .
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Figure 5.2 – The energy landscape of the binding and unbinding states. Dimers diffuse slower
than monomers since the effective radius is larger.

5.3.3 Negative Soret coefficient due to particle-particle interaction

Now let us consider non-diluted colloid suspension, where the interaction between colloidal

particles is not negligible. In such an environment, two-particle can bind to form a dimer,

and the dimer still moves diffusely. The reaction-diffusion equation for such a model can be

written as
∂t c1 = 2k−c2 −2k+c2

1 +D1∇c1

∂t c2 = k+c2
1 −k−c2 +D2∇c2,

(5.21)

where c1 and c2 are the concentration of the monomers and dimers, respectively. With the

mass conservation condition c1 +2c2 = ctot and defining the association constant K ≡ k+
k−

, the

equilibrium solution of the chemical reaction part is

c(eq)
1 (K ) =

p
1+8K ctot −1

2K

c(eq)
2 (K ) =

4K c +1−p
1+8K ctot

4K
.

(5.22)

Using the local-equilibrium condition, the diffusion equation of the total concentration of

colloids reads

∂t ctot = ∇(〈D〉ctot ) = ctot∇〈D〉+〈D〉∇ctot , (5.23)

where 〈D〉 = (c(eq)
1 D1 +2c(e)

2 D2)/ctot . Thus we can obtain the thermodiffusion coefficient as

DT = ∇T 〈D〉. Assuming Arrhenius transition rate K = keβ∆E , where ∆E = E2 −E1, we can
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calculate the thermodiffusion coefficient explicitly

ST ≡ DT

〈D〉 = (E2 −E1) (D2 −D1) g (∆E ,T,k,c), (5.24)

where g (∆E ,T,k,c) is a positive-definite function. The sign of the Soret coefficient is de-

termined by the signs of diffusivity difference and the energy difference. According to the

Stokes-Einstein relation, the diffusion coefficient is proportional to the inverse of the particle’s

radius, and the effective radius of a dimer is apparently larger than that of a monomer. Thus,

the dimer should diffuse slower, D2−D1 < 0. The sign of the diffusivity difference is fixed, then

the sign is solely determined by the energy difference. If the slow diffusion state, the dimer,

has higher energy, the Soret coefficient will be negative, i.e. the particle favors the hot side.

Combining this with the thermophoresis of a single-state particle’s positive Soret coefficient

can lead to the sign-reverse as a function of temperature.
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6 Conclusion

In this work, we discussed the properties of chemical reactions maintained out of equilibrium

by non-isothermal conditions.

The aim was to illustrate how non-equilibrium conditions can give rise to the origin of life

or, more specifically, the early stages of chemical evolution. For the prebiotic stage of life’s

formation, we need to study simple reaction systems to see how they gain information from

the inhomogeneous environment and evolve to more organized and/or higher-energy states

by using negative entropy flux to trigger kinetic stabilization. We showed that even a reaction

system of only two states could utilize the non-isothermal condition to maintain itself in an

organized state. Within a more complex reaction system, a three-state system, it can dissipate

energy between thermal reservoirs of different temperatures to achieve kinetic discrimination

of its energy landscape. Only in non-equilibrium conditions do reaction systems show rich

properties related to their kinetic features and violate the energetically determined state

governed by Boltzmann distribution. Further discussion of dissipation-driven selection is

included in our paper[14], in which we extend the three-state system to tree networks and show

that the fast-dissipation branch is favored. In Chapter 4, we see how a time-periodic variation

of temperature can mimic the temperature gradient to lead to the same dissipation-driven

effects on time-average quantities.

Accumulation of chemical reactants in a certain region is essential in prebiotic evolutions and

is achieved through thermophoresis[16]. In Chapter 5, we introduce a new mechanism of

thermophoresis. As we show, the chemical-state-dependent diffusion coefficient leads to the

temperature dependence of effective diffusivity. In the presence of a temperature gradient, the

effective diffusivity then shows positional dependence, which finally leads to thermophoresis.

This result is first derived for discrete chemical states and then generalized into continuous

chemical space. We also discuss that when a particle does not have distinct states for which

we can still get thermophoresis by regarding the velocity of a particle as a kind of state. This

single-particle contribution can be easily added to the multi-states case. The collective effect

of particles is also considered: binding of particles causes the negative Soret coefficient since

the binding and unbinding states have different energies and diffusivity. A similar mechanism
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has also been found in other non-uniform environments[41–43].
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A Appendixes

A.1 Derivation of Langevin equation

The first Hamiltonian is of the molecule, the second one is the environment Hamiltonian and

the third part represents the interactions between the molecule and the environment. And the

Hamiltonian reads

H(q,p) =
1

2

∑
k

p−2
k

2Mk
+ 1

2

∑
k

∑
m

Vmk (qk −qm)

HE (qe ,pe ) =
∑

j

pe
j

2

2m j

Hi nt (q,qe ) =
∑
k

∑
j

V i nt
m j (qk −qe

j )

(A.1)

For a particle in the environment represented by a pair of coordinates (qe
k , pe

i ), the equation of

motion reads

d 2

d t 2 (m j qe
j ) = −

∂V i nt
m j

∂qe
j

(A.2)

Taking the second order approximation, namely the harmonic oscillator approximation, the

interaction between the part of molecular and the solvent molecule j is V i nt
m j =ω2

j k m j (qk −
qe

j )2/2.

d 2qe
j (t )

d t 2 = −ω2
j mi (qe

j (t )−∑
k

qk (t )) (A.3)

We assume the solvent molecules move much faster than the molecular coordinates. We can
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get the analytical solution of the above equation as

qe
j (t ) = qe

j (0)cos(ω j k t )+ p j (0)

m jω j k
sin(ω j k t )+∑

k

(
qk (t )−qk (0)cos(ω j k t )−

∫ t

0

pk (s)

Mk
cos(ω j k (t − s))

)
(A.4)

Plugging it back to the equation of motion of the large molecule

Mk q̈k = −∂H
∂qk

= −1

2

∑
m

∂Vmk (qk −qm)

∂qk
−

∫ t

0

pk (s)

Mk
K (t − s)+ξ(t )

(A.5)

where

K (t ) ' ∑
j∈Rk

ω j k m j sin(ω j k t )

ξ(t ) ' ∑
j∈Rk

ω2
j k m j

(
(qe

j (0)−qk (0))cos(ω j k t )+
pe

j (0)

m jω j k
sin(ω j k t )

) (A.6)

Here we applied the assumption that only the solvent molecules close to the k-th component

of the large molecule have effective interaction. As shown in Fig 2.1, only the solvent molecules

in the dashed circle interact with the k-th part. Thus, the sum in equation (2) does not need

to run overall solvent molecules, instead, just the neighboring solvent molecules. And also

the k-th component’s adjacent molecules do interact with other parts of the large molecule.

Therefore we can also drop out the last two terms of ξ(t ).

As the solvent molecules are in thermal equilibrium, they should follow the Boltzmann distri-

bution

P ({qe
j (0), qe

j (0)}; {qk (0)}) ∝ exp

[
−∑

j

(
pe

j (0)2

2m j
+

m jω
2
j k (qe )

2
(qe

j (0)−q(0))2

)]
(A.7)

Using this probability distribution, we can find the mean and variance of the noise term as

〈ξ(t )〉 = 0〈ξ(t )〉ξ(t ′)〉 = kB T K (t − t ′) (A.8)

One more thing that needs to clarify is a fast-variable approximation. The solvent particles

vibrate much faster than the changing of the momentum of the large molecule, then the
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memory damping term K (t ) can be approximated by a Dirac delta function.

K (t ) = 2γkδ(t ) (A.9)

where γk is the so-called friction coefficient. The evolution equation of the k-th component of

the large particle is

Mk q̈k = −∂qk V (q)−γk q̇k +ξ(t ) (A.10)
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