class: center, middle ## **Non-adiabatic Dynamics Using Trajectories**: Ehrenfest Dynamics and the Exact Factorization Method ##### *Shiling Liang* | *Section of Physics, EPFL* - Born-Huang expansion and coupled-channel equation - Born-Oppenheimer limit - Ehrenfest dynamics - Exact fractorization --- ## Background knowledge ### Classical: Netwon's equation $$ M\_\gamma \frac{d^2\mathbf{R}\_{\gamma}}{dt^2}=-\nabla\_\gamma E(\mathbf{R}) $$ where $\mathbf{R}_{\gamma}$ is the coordinates of nucleus $\gamma$, $E(\mathbf{R})$ is the empirical potential energy surface. ### Quantum: Schrödinger equation for molecules The Schrödinger equation for nucleus with electrons reads $$ i\hbar\partial\_t\Psi(\mathbf{r},\mathbf{R},t)=\hat{H}\Psi(\mathbf{r},\mathbf{R},t) $$ where $\Psi(\mathbf{r},\mathbf{R},t)$ is the wave function of the electron-nuclies, $\mathbf{r}$ is the electron positions, $\mathbf{R}$ is the nuclei positions. $\hat{H}$ is the Hamiltonian of the system, which consists the following parts $$ \hat{H}=\hat{T}\_{nu}+ \underbrace{\hat{T}\_{el} + \hat{V}\_{ee}+\hat{V}\_{en}+\hat{V}\_{nn}}\_{\hat{H}\_{el}(\mathbf{R},\mathbf{r})} $$ --- ## The derivation of coupled-channel equation using Born-Huang expansion The Born-Huang expand the total wave function as $$ \Psi(\mathbf{r},\mathbf{R},t)=\sum\_i^{\infty}\Omega\_i(\mathbf{R},t)\Phi\_i(\mathbf{r};\mathbf{R}). $$ where $\Phi\_i(\mathbf{r};\mathbf{R})$ is the eigenwavefunction of electronic Hamiltonian $\hat{H}\_{e}(\mathbf{r};\mathbf{R})$ with eigenenergy $E^{el}\_i$. Inserting this expansion back to the TDSE gives the time evolution equation of the coefficient $\Omega\_i(\mathbf{R},t)$ $$ i\hbar \partial\_t\Omega\_j(\mathbf{R},t)=\left[-\hat{T}\_{nu}+E\_j^{el}\right]\Omega\_j(\mathbf{R},t)+\sum\_i^{\infty}\mathcal{F}\_{ij}(\mathbf{R})\Omega\_i (\mathbf{R},t) $$ where $\mathbf{F}\_{ji}(\mathbf{R})$ is the coupling matrix between channel $i$ and $j$ $$ \mathcal{F}\_{ji}(\mathbf{R}) =\int d\mathbf{r}\Phi\_j^\* (\mathbf{r},\mathbf{R})\hat{T}\_{nu}\Phi\_i(\mathbf{r};\mathbf{R})+\sum\_{\gamma}\frac{1}{M\_\gamma}\left[\int d\mathbf{r}\Phi\_j^\* (\mathbf{r};\mathbf{R})\hat{p}\_{\gamma}\Phi\_i(\mathbf{r};\mathbf{R}) \right]\hat{p}\_\gamma $$ --- ## Consider the Born-Oppenheimer limit of coupled-channel equation If we neglect the coupling terms, $\mathcal{F}\_{ji}(\mathbf{R})$, the Born-Huang expansion is reduced to the Born-Oppenheimer approximation, i.e. adiabatic approximation. In the adiabatic approximation, the total wavefunction can be simply written as the product of electronic wavefunction and the nuclear wave function $$ \Psi(\mathbf{r},\mathbf{R},t)=\Omega\_j(\mathbf{R},t)\Phi\_j(\mathbf{r};\mathbf{R}) $$ To get the equation of motion of the nucleus, we need to find the ground state of electrons to give the potential energy surface (PES), $E_j^{el}(\mathbf{R})$. $$ M\_\gamma\ddot{\mathbf{R}}^\gamma\_j(t)=-\nabla\_\gamma E\_j^{el}(\mathbf{R}(t)) $$ --- ## Ehrenfest dynamics (mean-field) ### Key assumptions The molecular wavefunction in Ehrenfest dynamics reads $$ \Psi(\mathbf{r},\mathbf{R},t)=\Phi(\mathbf{r},t)\Omega(\mathbf{R},t)\exp\left[\frac{i}{\hbar}\int\_{t\_0}^{t}dt'E\_{el}(t')\right] $$ where $$ E\_{el}(t)=\iint d\mathbf{r} d\mathbf{R} \Phi^\* (\mathbf{r},t)\Omega^\* (\mathbf{R},t)\hat{H}\_{el}(\mathbf{r},\mathbf{R}) \Phi (\mathbf{r},t)\Omega(\mathbf{R},t) $$ subsituting the anstaz wavefunction backto the time-dependent Schrödinger equation one can finally obtains One need to use these two relations $$ \begin{aligned} \int d\mathbf{r}\Phi^\* (\mathbf{r},t)\partial\_t\Phi(\mathbf{r},t)=E\_{el}(t)\\\ \int d\mathbf{R}\Omega^\* (\mathbf{R},t)\partial\_t\Omega(\mathbf{R},t)= E \end{aligned} $$ --- ## Ehrenfest dynamics (mean-field) ### Results the equation of mothion for nuclear and electron wavefunctions reads $$ \begin{aligned} i\hbar\partial\_t\Phi &= \hat{T}\_{el}\Phi+\underbrace{\left[\int d\mathbf{R}\Omega^\* (\hat{V}\_{ee}+\hat{V}\_{en}+\hat{V}\_{nn})\Omega\right]}\_{\langle \hat{V}\rangle\_{nu}}\Phi\\\ i\hbar\partial\_t\Omega &= \hat{T}\_{nu}\Omega + \underbrace{\left[\int d\mathbf{R}\Phi^\* \hat{H}\_{el}\Phi\right]}\_{\langle \hat{H}\_{el}\rangle\_{el}}\Omega\\\ \end{aligned} $$ and then taking **classical limit**, one can finnal obtain $$ \begin{aligned} i\hbar\partial\_t\Phi &= \hat{H}\_{el}\Phi\\\ M\_\gamma \ddot{R}\_{\gamma}&=-\nabla\_{\gamma}\left\langle \hat{H}\_{el}(\mathbf{r},\mathbf{R})\right\rangle\_t \end{aligned} $$ --- ## Exact factorization method Total wavefunction = electronic wavefucntion $\times$ nuclear wavefunction $$ \Phi(\mathbf{r},\mathbf{R},t)=\Phi(\mathbf{r};\mathbf{R},t)\Omega(\mathbf{R},t) $$ The advantage is that both two terms have physical meaning: the **marginal nuclear probability distribution** and the **conditional electronic distribution** $$ \begin{aligned} \mathrm{P}\_{el}(\mathbf{r}|\mathbf{R},t) = |\Phi(\mathbf{r};\mathbf{R},t)|^2, \quad \mathrm{P}\_{nu}(\mathbf{R}) = |\Omega(\mathbf{R},t)|^2 \end{aligned} $$ The key assumption to make these interpretation ture is the normalization condition of $\mathrm{P}\_{el}$ $$ \int d\mathbf{r} \mathrm{P}\_{el}(\mathbf{r}|\mathbf{R},t)=1 $$ --- ## Comparing the Ehrenfest dynamics and the exact factorization method
|Method |Exact or Approximated| |:---:|:---:| |Born-Huang | Exact| |Born-Oppenheimer | Approximated| |Ehrenfest dynamics | Approximated| |Exact factorization |Exact|
- Exact factorization gives a rigrous defination of the time-dependent potential energy surface, while the Ehrenfest dyanmics gives mean-field potential energy surface. - More accurate. - Exact factorization is a rigorous starting point for making approximations. - Exact factorization can capture tunneling (tunneling is the leading mechanism for the dissociation) --- ## (pseudo)Code implementation of Ehrenfest dynamics ```python initialize phi, R, v_R, t, dt # calculate the potential energy surface using mean-field appraoch E_el(t) =
for k steps # update the position of nucleus R(t+dt) = R(t-dt/2) + v(t)*dt # Euler integral # update the electronic wave function using phi(t+dt) = U(E_el*dt)*phi(r,R,t) #M-SOFT # update potential energy E_el(t+dt) =
# update velocity v_R(t+dt) = v_R(t) + (E_el(t+dt)-E_el(t))/((R(t+dt)-R(t))*M) #update time t = t + dt end for ``` --- ## Summary |![drawing](tree_graph.png)| |:---:| |**Figure.** Ab-initio molecular dynamics.| --- ## References [1] De Carvalho, F.F., Bouduban, M.E., Curchod, B.F. and Tavernelli, I., 2014. Nonadiabatic molecular dynamics based on trajectories. Entropy, 16(1), pp.62-85. [2] Tully, J.C., 1998. Nonadiabatic dynamics. In Modern methods for multidimensional dynamics computations in chemistry (pp. 34-72). [3] Li, X., Tully, J.C., Schlegel, H.B. and Frisch, M.J., 2005. Ab initio Ehrenfest dynamics. The Journal of chemical physics, 123(8), p.084106. [4] Abedi, A., Maitra, N.T. and Gross, E.K., 2010. Exact factorization of the time-dependent electron-nuclear wave function. Physical review letters, 105(12), p.123002. --- # Thanks!